• Title/Summary/Keyword: Split-phase

Search Result 172, Processing Time 0.026 seconds

Split-bolus CT urography with synchronous nephrographic and excretory phase in dogs: comparison of image quality with three-phase CT urography and optimal allocation ratio of contrast medium

  • Je, Hyejin;Lee, Sang-Kwon;Jung, Jin-Woo;Jang, Youjung;Chhoey, Saran;Choi, Jihye
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.55.1-55.11
    • /
    • 2020
  • Background: Computed tomography urography (CTU), based on the excretion of contrast medium after its injection, allows visualization of the renal parenchyma and the renal collecting system. Objectives: To determine the optimal contrast medium dose allocation ratio to apply in split-bolus CTU in dogs. Methods: This prospective, experimental, exploratory study used 8 beagles. In 3-phase CTU, unenhanced-, nephrographic-, and excretory-phase images were obtained with a single injection of 600 mg iodine/kg iohexol. In split-bolus CTU, two different contrast medium allocation ratios (30% and 70% for split CTU 1; 50% and 50% for split CTU 2) were used. Unenhanced phase image and a synchronous nephrographic-excretory phase image were acquired. Results: Although the attenuation of the renal parenchyma was significantly lower when using both split CTUs than the 3-phase CTU, based on qualitative evaluation, the visualization score of the renal parenchyma of split CTU 1 was as high as that of the 3-phase CTU, whereas the split CTU 2 score was significantly lower than those of the two others. Artifacts were not apparent, regardless of CTU protocol. The diameter and opacification of the ureter in both split CTUs were not significantly different from those using 3-phase CTU. Conclusions: Split-bolus CTU with a contrast medium allocation ratio of 30% and 70% is feasible for evaluating the urinary system and allows sufficient enhancement of the renal parenchyma and appropriate distention and opacification of the ureter, with similar image quality to 3-phase CTU in healthy dogs. Split-bolus CTU has the advantages of reducing radiation exposure and the number of CT images needed for interpretation.

Low Phase Noise VCO using Microstrip Square Open Loop Split Ring Resonator (마이크로스트립 사각 개방 루프 SRR(Split Ring Resonator)를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.22-27
    • /
    • 2007
  • In this paper, a novel voltage-controlled oscillator (VCO) using the microstrip square open loop split ring resonator (OLSRR) is presented for reducing the phase noise. For this purpose, the square-shaped split ring resonator (SRR) haying the form of the microstrip square open loop is investigated. Compared with the microstrip square open loop resonator, the microstrip square OLSRR has the larger coupling coefficient value, which makes a higher Q value, and has reduced the phase noise of VCO. The VCO with 1.7V power supply has the phase noise of $-120\sim-116.5$ dBc/Hz @ 100 kHz in the tuning range, $5.746\sim5.854$ GHz. The figure of merit (FOM) of this VCO is $-200.33\sim-197$ dBc/Hz @ 100 kHz in the same tuning range.

Design and Development of Low-Cost Switched Reluctance Motor Drive System (저가형 스위치드 릴럭턴스 모터 드라이브 시스템 개발)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2162-2167
    • /
    • 2009
  • A Low cost and variable speed brushless motor drive system with single switch per phase is presented. The motor drive is realized with a novel two-phase flux-reversal-free switched reluctance motor and a split AC two switch converter. The strategy of the controller and the converter for its realization are described. Comparisons between a split AC converter, asymmetric converter, split DC converter, single controllable switch converter, and N+1 converter are performed for its device rating, cost, switching losses and conduction losses, and converter efficiency. The split AC converter is analyzed and simulated to verify the characteristics of the converter circuitry and control feasibility and the simulation results are presented. The efficiency with various loads is numerically estimated and experimentally compared from viewpoint of subsystem and system in details. The focus of this paper is to compare the presented motor drive system to the asymmetric converter system throughout experiments and demonstrate single switch per phase converter having comparable efficiency as the asymmetric converter system.

Nonlinear Control of Three-phase Split-Capacitor Inverters under Unbalanced and Nonlinear Load Conditions

  • Nguyen, Qui Tu Vo;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • This paper presents a new control scheme for a three-phase split DC-link capacitor inverter as an AC power supplies. The proposed control method can maintain the balanced sinusoidal output voltage under unbalanced and nonlinear load conditions. The validity of the control method has been verified by simulation results.

  • PDF

Implementation of Voltage Controlled Oscillator Using Planar Structure Split Ring Resonator (SRR) (평면형 구조의 분리형 링 공진기를 이용한 전압제어 발진기 구현)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1538-1543
    • /
    • 2013
  • In this paper, a novel split ring resonator is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator. Oscillator using proposed split ring resonator is designed, it has improved phase noise characteristics. At the fundamental frequency of 5.8GHz, 7.22dBm output power and -83.5 dBc@100kHz phase noise have been measured for oscillator with split ring resonator. The phase noise characteristics of oscillator is improved about 9.7dB compared to one using the general ${\lambda}/4$ microstrip resonator. Next, we designed voltage controlled oscillator using proposed split ring resonator with varactor diode. The VCO has 125MHz tuning range from 5.833GHz to 5.845GHz, and phase noise characteristic is -118~-115.5 dBc/Hz@100KHz. Due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Implementation of RF Oscillator Using Microstrip Split Ring Resonator (SRR) (마이크로스트립 분리형 링 공진기를 이용한 RF 발진기 구현)

  • Kim, Girae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.273-279
    • /
    • 2013
  • In this paper, a novel split ring resonator is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator, and oscillator for 5.8GHz band is designed using proposed split ring resonator. At the fundamental frequency of 5.8GHz, 7.22dBm output power and -83.5 dBc@100kHz phase noise have been measured for oscillator with split ring resonator. The phase noise characteristics of oscillator is improved about 9.7dB compared to one using the general ${\lambda}$/4 microstrip resonator. Because it is possible that varactor diode or lumped capacitor is placed on the gaps of split ring resonator, resonant frequency can be controlled by bias voltage. We can design voltage controlled oscillator using proposed split ring resonator. Thus, due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Low-Phase Noise Oscillator Using Substrate Integrated Waveguide and Complementary Split Ring Resonator (기판 집적형 도파관(SIW)과 Complementary Split Ring Resonator(CSRR)로 구현한 저위상 잡음 발진기 설계)

  • Park, Woo-Young;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.468-474
    • /
    • 2012
  • A low phase-noise microwave oscillator is presented by a substrate integrated waveguide(SIW) loading a complementary split ring resonator(CSRR) in this paper. The unloaded $Q$-factor of the SIW cavity is increased by loading a complementary split ring resonator(CSRR) and its value exhibits 1960. It is theoretically and experimentally demonstrated that the proposed circuit generates 11.3 dBm of output power at 9.3 GHz and a phase-noise of -127.9 dBc/Hz at 1-MHz offset.

Low Phase Noise VCO using Microstrip Square Open Loop Multiple Split Ring Resonator (마이크로스트립 사각 개방 루프 다중 SRR(Split Ring Resonator)를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.60-66
    • /
    • 2007
  • In this paper, a novel voltage-controlled oscillator (VCO) using the microstrip square open loop multiple split ring resonator (OLMSRR) is presented for reducing the phase noise property. The square-shaped multiple split ring resonator (MSRR) having the form of the microstrip square open loop is investigated to realize this property. Compared with the microstrip square open loop resonator and the microstrip square open loop split ring resonator (OLSRR) as well as the conventional microstrip line resonator, the microstrip square OLMSRR has the larger coupling coefficient value, which makes a higher Q value, and has reduced the phase noise of VCO. The VCO with 1.7V power suppIy has the phase noise of $-124.5\;{\sim}\;-122.0\;dBc/Hz$ @ 100 kHz in the tuning range, $5.746\;{\sim}\;5.84\;GHz$. The figure of merit (FOM) of this VCO is $-203.96\;{\sim}\;-201.6\;dBc/Hz$ @ 100 kHz in the same tuning range. Compared with VCO using the conventional microstrip line resonator, VCO using the microstrip square open loop resonator and VCO using microstrip square OLSRR, the phase noise property of VCO using the proposed resonator has been improved in 25.66 dB, 8.34 dB, and 4.5 dB, respectively.

Low Phase Noise VCO with X -Band Using Metamaterial Structure of Dual Square Loop (메타구조의 이중 사각 루프를 이용한 X-Band 전압 제어 발진기 구현에 관한 연구)

  • Shin, Doo-Soub;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.84-89
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator (VCO) using the microstrip square open loop dual split ring resonator is presented for reducing the phase noise. The square-shaped dual split ring resonator having the form of the microstrip square open loop is investigated to reduce the phase noise. Compared with the microstrip square open loop resonator and the microstrip square open loop split ring resonator as well as the conventional microstrip line resonator, the microstrip square dual split ring resonator has the larger coupling coefficient value, which makes a higher Q value, and has reduced the phase noise of VCO. The VCO with 1.7V power supply has the phase noise of -123.2~-122.0 dBc/Hz @ 100 kHz in the tuning range, 11.74~11.75 GHz. The figure of merit (FOM) of this VCO is-214.8~-221.7 dBc/Hz dBc/Hz @ 100 kHz in the same tuning range. Compared with VCO using the conventional microstrip line resonator, VCO using microstrip square open loop resonator, the phase noise of VCO using the proposed resonator has been improved in 26 dB, 10 dB, respectively.

The Experimental Study of Liquid Phase Mixing Mechanism of Split Triplet Impinging Spray (분리 충돌형 분사기의 액상 혼합 메커니즘에 관한 실험적 고찰)

  • 이성웅;조용호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.18-23
    • /
    • 2002
  • Liquid phase mixing of impinging injector is a resultant byproduct from the momentum exchange between a pair of impinging jets and penetration of opponent jet. Principal aim of the present study is revealing the liquid phase mixing mechanism of split triplet impinging injection sprays, and thus extending our understanding on this particular injection element. Overall mixing extent is estimated from patternation tests by the use of purified tap water and kerosene to simulate the real propellant components, respectively, and with the liquid jet momentum ratio, a controlling mixing parameter, in the range of 0.5 to 6.0. Emphasis is placed on the effect of liquid sheet superposition and disintegration, and the results with detailed spray visualization revealed the fact that superposed liquid sheet disintegration is the main pathway of liquid phase mixing of split triplet impinging injector to yield enhanced mixing qualities.

  • PDF