DOI QR코드

DOI QR Code

Current Status and Development Direction of Advanced Air Mobility ICTs

Advanced Air Mobility ICT 기술 현황 및 발전 방향

  • B.J. Oh ;
  • M.S. Lee ;
  • B.K. Kim ;
  • Y.J. Jeong ;
  • Y.J. Lim ;
  • C.D. Lim
  • 오봉진 (DNA+드론플랫폼연구센터) ;
  • 이문수 (DNA+드론플랫폼연구센터) ;
  • 김법균 (DNA+드론플랫폼연구센터) ;
  • 정양재 (DNA+드론플랫폼연구센터) ;
  • 임유진 (DNA+드론플랫폼연구센터) ;
  • 임채덕 (에어모빌리티연구본부)
  • Published : 2023.06.01

Abstract

In this study, the status of global advanced air mobility (AAM) was investigated to derive information and communications technologies (ICTs) that should be prepared according to directions of domestic AAM development. AAM is an urban air traffic system for moving from city to city by electric vertical take-off and landing or personal aircraft. It is expected to establish a three-dimensional air traffic system that can solve ground traffic congestion caused by the rapid global urbanization. With the full-scale commercialization of AAM solutions, high-density air traffic is expected, and with the advent of the personal air vehicle (PAV), the flight space usage is expected to expand. Therefore, it is necessary to develop a safe AAM service through early research on core ICTs for autonomous flight.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임[No. NRF-2020M3C1C2A01080819].

References

  1. 전국경제인연합회, "도심항공모빌리티(UAM) 동향 및 과제," 2021. 4. 28.
  2. 조일구, "UAM(도심항공모빌리티) 산업의 D.N.A 활용 현황 및 전망," ICT R&D 정책동향, IITP, SPOT 2021-14호, 2021, pp. 20-25.
  3. 관계부처합동, "도시의 하늘을 여는 한국형 도심항공교통(KUAM) 로드맵," 2020. 5, pp. 20-25.
  4. 한국산업정보실, "도심항공교통(UAM)에 관한 유럽의 사회적 수용," 한국항공협회, 2021, pp. 20-25.
  5. 심혜정, "도심 항공 모빌리티(UAM), 글로벌 산업 동향과 미래 과제," Trade Focus, 한국무역협회, no. 22, 2021. 6, pp. 9-10.
  6. 국토교통부 보도자료, "UAM, '25년에 상용화' 35년에는 대구까지 간다," 2021. 3. 31.
  7. G. Manfredi and Y. Jestin, "An introduction to ACAS Xu and challenges ahead," in Proc. IEEE/AIAA Digit. Avionics Syst. Conf. (DASC), (Sacramento, CA, USA), Sept. 2016.
  8. D. Manzanas Lopez et al., "Evaluation of neural network verification methods for air-to-air collision avoidance," J. Air Transportation, vol. 31, no. 1, 2023.
  9. 국토교통부 보도자료, "항공위성서비스(KASS) 정밀위치신호… 15일 첫 제공," 2022. 12. 13.
  10. 조상근 외, "한국형 위성항법 시스템(KPS)을 활용한 메가시티 UAM 운용방안," JCCT, vol. 8, no. 3,
  11. https://daedalean.ai/
  12. National Academies of Sciences, Engineering, Medicine, Aeronautics and Space Engineering Board, Advancing Aerial Mobility: A National Blueprint, National Academies Press, Washington D.C., USA, 2020.
  13. Wisk, Boeing, Concept of Operations for Uncrewed Urban Air Mobility, The Boeing Company,
  14. UK Air Mobility Consortium, Urban Air Mobility Concept of Operations for the London Environment, 2022. 3.
  15. I.M. Gregory et al., "Intelligent contingency management for urban air mobility," in Proc. Int. Conf. DDDAS, (Boston, MA, USA), Oct. 2020, pp. 22-26.
  16. 3GPP TS 22.125 V.17.6.0 Release 17, 2022. 4.
  17. 전자신문, "KT, 고흥 UAM 전용 5G 항공망 구축 완료," 2022. 10. 5.
  18. T. Tabassum et al., "A fault tolerant multi-sensor fusion navigation system for drone in urban environment," in Proc. POSNAV, (Berlin, Germany), Nov. 2022.
  19. S. Zermani et al., "Bayesian network-based framework for the design of reconfigurable health management monitors," in Proc. 2015 NASA/ESA AHS, (Montreal, Canada), June 2015.
  20. Y. Pashchuk et al., "Reliability synthesis for UAV flight control system," in Proc. ICTERI, (Kyiv, Ukraine), May 2017.
  21. D. Guo et al., "A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors," Neurocomputing, vol. 319, 2018.
  22. F. Ahmed and M. Jenihhin, "A survey on UAV computing platforms: A hardware reliability perspective," Sensors, vol. 22, no. 16, 2022.