• Title/Summary/Keyword: advanced air mobility

Search Result 68, Processing Time 0.022 seconds

Current Status and Development Direction of Advanced Air Mobility ICTs (Advanced Air Mobility ICT 기술 현황 및 발전 방향)

  • B.J. Oh;M.S. Lee;B.K. Kim;Y.J. Jeong;Y.J. Lim;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • In this study, the status of global advanced air mobility (AAM) was investigated to derive information and communications technologies (ICTs) that should be prepared according to directions of domestic AAM development. AAM is an urban air traffic system for moving from city to city by electric vertical take-off and landing or personal aircraft. It is expected to establish a three-dimensional air traffic system that can solve ground traffic congestion caused by the rapid global urbanization. With the full-scale commercialization of AAM solutions, high-density air traffic is expected, and with the advent of the personal air vehicle (PAV), the flight space usage is expected to expand. Therefore, it is necessary to develop a safe AAM service through early research on core ICTs for autonomous flight.

A Study on the Construction of Sustainable Connected Transportation in Kepulauan Riau, Indonesia Using Advanced Air Mobility (AAM) (AAM을 활용한 인도네시아 Kepulauan Riau의 지속 가능한 연결 교통 구축에 관한 연구)

  • Prastyoutomo, Puguh;Kwang-Byeng, Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.288-299
    • /
    • 2024
  • Indonesia's Keplauan Liau region is facing limitations in the development of connected transportation infrastructure due to its archipelago nature, budget constraints, and lack of land. Transportation demand is increasing due to its strategic location in the Malacca Strait Business Triangle and many tourist visits from Singapore and Malaysia. However, due to the nature of connecting many islands, the establishment of transportation infrastructure has not been achieved. This paper aims to predict the innovations that can be brought about by the introduction of advanced air mobility (AAM) with an electric vertical take-off and landing (e-VTOL) system through analysis and application consideration of the actual situation in Indonesia's Kepulauan Liau region. In addition, it intends to contribute to national-level review and policy establishment on the establishment of innovative transportation infrastructure using AAM, reflection in infrastructure construction plans, and active global cooperation.

Revolutionizing Nepal's Transportation: The Potential of Advanced Air Mobility (AAM) in Overcoming Geographical Challenges

  • Leeladhar Joshi;Kwang-Byeng Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.37-47
    • /
    • 2024
  • This paper examines the unique transportation challenges posed by Nepal's diverse and rugged terrain, which significantly hampers socio-economic development due to its negative impact on infrastructure, trade, and accessibility. Despite ongoing efforts to enhance road and traditional air transport systems, Nepal's geographic and environmental conditions continue to obstruct efficient connectivity, particularly in rural and remote areas. This study proposes Advanced Air Mobility (AAM) as a transformative solution, leveraging recent technological advancements in unmanned aerial vehicles (UAVs) and electric vertical takeoff and landing (eVTOL) aircraft. By conducting a comprehensive analysis of Nepal's current transportation infrastructure and the feasibility of AAM implementation, the paper highlights the potential benefits of AAM, including improved accessibility, economic growth, and environmental sustainability. Furthermore, it addresses the anticipated challenges and regulatory considerations necessary for integrating AAM into Nepal's transportation network. Through a multidisciplinary approach, this research aims to contribute to the discourse on overcoming transportation barriers in mountainous regions, offering policy recommendations and identifying areas for future study to facilitate the adoption of AAM in Nepal and similar contexts worldwide.

An Empirical Study on Fear and Dizziness Using UAM Simulator (UAM 시뮬레이터를 활용한 공포심과 어지러움에 대한 실증 연구)

  • Se-Jun Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.262-268
    • /
    • 2023
  • Based on the government's willingness to commercialize UAM with the goal of 2025, it is making remarkable achievements in various fields, including the development of UAM. In addition, based on the concept of UAM, it is evolving into an Advanced Air Mobility(AAM) concept that includes commercial operation between long-distance or short-range cities, cargo delivery, public services, aviation tourism, and personal/leisure aircraft. however, research on physical problems such as low-altitude operation characteristics, speed within three dimensions, and dizziness caused by external environment has yet to be found. Therefore, in this study, actual images are taken while flying at the expected altitude and speed of UAM using a helicopter, and by experiencing it to the general public using a UAM simulator equipped with VR and Motion, physical reactions such as fear and dizziness of passengers that may occur during actual UAM operation of UAM are analyzed.

Development of Highly Sensitive SWIR Photodetectors based on MAPI-capped PbS QDs (MAPI 리간드 치환형 PbS 양자점 기반의 고감도 단파장 적외선 광 검출기 개발)

  • Suji Choi;JinBeom Kwon;Yuntae Ha;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2024
  • With the development of promising future mobility and urban air mobility (UAM) technologies, the demand for LIDAR sensors has increased. The SWIR photodetector is a sensor that detects lasers for the 3D mapping of lidar sensor and is the most important technology of LIDAR sensor. An SWIR photodetector based on QDs in an eye-safe wavelength band of over 1400 nm has been reported. QDs-based SWIR photodetectors can be synthesized and processed through a solution process and have the advantages of low cost and simple processing. However, the organic ligands of QDs have insulating properties that limit their ability to improve the sensitivity and stability of photodetectors. Therefore, the technology to replace organic ligands with inorganic ligands must be developed. In this study, the organic ligand of the synthesized PbS QDs was replaced with a MAPI inorganic ligand, and an SWIR photodetector was fabricated. The analysis of the characteristics of the manufactured photodetector confirmed that the photodetector based on MAPI-capped PbS QDs exhibited up to 26.5% higher responsivity than that based on organic ligand PbS QDs.

A Study on the Pilot Qualification and Qualification System Establishment of The Aerospace Composite Materials

  • Yong Man Yang;Sung In Cho;Seok Ho Jeong;Je-Jun Kim;Manseok Oh;Young Hwan Kim
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.14-24
    • /
    • 2023
  • The materials applied to the aircraft fuselage, parts, and components must be verified by relative authorities in accordance with the procedures set by the airworthiness authority to achieve the aircraft type certification. There are no examples of domestic composite materials which were verified in order to be applied to aircraft structure. In this study, the composite material certification system of NCAMP, an American composite material standard certification organization, was reviewed and used as the fundamentals of the first aerospace composite material certification system in ROK(Fig 2,8). Also updated material certification documents were developed and confirmed by material certification engineers and inspectors. This aerospace composite material qualification system is intended to modernize the material certification system for AAM(Advanced Air Mobility) as well as aircraft and to enhance the understanding of related technicians and inspectors.

Disturbance Observer and Time-Delay Controller Design for Individual Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기 기반 개별 블레이드 피치 조종 시스템의 제어를 위한 외란 관측기와 시간 지연제어기 설계)

  • Jaewan Choi;Minyu Kim;Younghoon Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • Recently, the concept of Urban Air Mobility (UAM) has expanded to Advanced Air Mobility (AAM). A tilt rotor type of vertical take-off and landing aircraft has been actively studied and developed. A tilt-rotor aircraft can perform a transition flight between vertical and horizontal flights. A blade pitch angle control system can be used for flight stability during transition flight time. In addition, Individual Blade Control (IBC) can reduce noise and vibration generated in transition flight. This paper proposed Disturbance Observer Based Control (DOBC) and Time Delay Control (TDC) for individual blade control of an Electro-Mechanical Actuator (EMA) based blade pitch angle control system. To compare and analyze proposed controllers, numerical simulations were conducted with DOBC and TDC.

Establishing Operational Management and Control Procedures for UAM Fleet Operators (UAM Fleet Operator 운항 관리 및 통제 절차개념 수립 연구)

  • Jeongmin Kim;Jaekyun Lee;Uwon Huh;Kyowon Song;Youngho Yoon;Yonghwan Cha
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.716-723
    • /
    • 2023
  • Global discussions are actively underway regarding the introduction of urban air mobility (UAM) to revolutionize the paradigm in the innovative mobility industry. While research related to airspace, vertiports, navigation, and communication pertinent to Korean UAM is actively pursued by relevant research institutions, there is a significant dearth in studies focusing on establishing concepts for operational management by UAM operators and formulating control procedures. The commercialization of UAM necessitates the establishment of standardized operational management concepts, pivotal as benchmarks for the individual system development among multiple UAM operators. This paper analyzes UAM exceptional law, operational readiness, existing regulations pertaining to commercial and rotary-wing aircraft, and proposes suitable approaches to formulate domestic low-density operational management and control procedures. By presenting strategies for conceptualizing operational management and control procedures in the initial low-density environment for UAM, this paper aspires to contribute to future trail operations and the wider adoption of UAM.

An Empirical Study on Establishing the Cross-track Corridor Dimension for UAM Operations (도심항공교통(UAM) 운영을 위한 횡적 회랑 규격 실증 연구)

  • Do-hyun Kim;Kyung-han Lee;Hyo-seok Chang;Seung-jun Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Urban air mobility (UAM) is being considered as an alternative to transportation in urban areas where traffic congestion is increasing. It is judged that it will be difficult to manage the complex UAM operation environment with the existing Air Traffic Service, which is a person-centered service. Therefore, an advanced information processing-based traffic management system for UAM (UATM) is needed. Airspace management is essential to establish a systematic UAM traffic management (UATM) environment. In particular, the establishment of exclusive corridors where UAM aircraft can operate safely can provide opportunities to operate UAM aircraft without violating the minimum flight altitude regulations. This study conducted an empirical analysis using a helicopter of similar size to UAM to establish the cross-track dimension of the corridor for UAM operation. The research results can be used as a guideline when designing UAM corridors.

Establishment of Safety Alert Systems for Urban Air Mobility Operations (도심항공교통(UAM) 운항을 위한 안전 경고 기능 구축)

  • Sang-il Choi;Seung-yeon Nam;Hui-yang Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.163-171
    • /
    • 2024
  • In the existing air traffic management (ATM) system, various types of safety alert features are provided based on trajectory data to ensure the safety of aircraft operations, along with aircraft position and detailed flight information. The urban air traffic management (UATM) system for urban air mobility (UAM) should also provide safety alert features to ensure the safety of UAM operations. Considering the operational environment of UAM, it is necessary that the safety alert features provided at least match or exceed those available in the existing ATM system. This study aims to present the safety alert features of the new UATM system that differ from those provided by the existing ATM system before introduction and commercialization of UAM. The study was conducted focusing on the safety alert features that should be provided in the event of a deviation from the UAM's path, and the establishment of the safety alert features was carried out in two parts: approach path monitor (APM), which is applied during the approach phase, and route adherence monitoring (RAM), which is applied during the cruise phase.