DOI QR코드

DOI QR Code

온도 및 이산화탄소 조절 환경에서 재배한 천궁(Cnidium officinale Makino)의 항산화 활성 및 페놀 화합물 함량 연구

A Study on the Antioxidant Activity and Phenolic Compound Content of Cnidium officinale Makino Cultivated in a Temperature and Carbon Dioxide-Controlled Environment

  • 채철주 (한국농수산대학교 교양학부) ;
  • 이경철 (한국농수산대학교 작물.산림학부) ;
  • 백하영 (한국농수산대학교 작물.산림학부) ;
  • 송영근 (전북대학교 임학과) ;
  • 장소희 (강원대학교 바이오헬스융합학과) ;
  • 손은화 (강원대학교 바이오헬스융합학과) ;
  • 주원균 (한국과학기술정보연구원 데이터기반문제해결연구단) ;
  • 구현정 (한국농수산대학교 작물.산림학부)
  • 투고 : 2023.10.31
  • 심사 : 2023.11.14
  • 발행 : 2023.11.30

초록

본 연구는 재배 환경에 민감한 식물인 천궁에 대해 온도 및 이산화탄소 인공환경을 조성하여 재배 기간 중 성장 지표 및 항산화 활성을 확인함으로써, 약용식물의 재배 환경과 성장 및 생리활성의 상호작용 이해를 위한 데이터 확보를 목적으로 하였다. 천궁의 재배지 평균 기온을 기준으로 +1.8℃/445 ppm(SSP1), +3.6℃/872 ppm(SSP3) 및 +4.4℃/1,142 ppm(SSP5)의 3개 그룹으로 나누어 자연광형 정밀환경조절장치(SPDS 챔버)를 활용해 4개월 동안 재배하였다. 천궁의 지상부 생장 및 Top/Root ratio, 엽중비(LWR)는 SSP1에 비해 SSP3과 SSP5에서 다소 감소하였으며, 뿌리중비(RWR)는 증가하였다. 또한, 식물의 항산화 활성 및 관련 페놀 화합물 함량은 천궁의 지상부에서 온도 및 CO2 농도에 비례하여 증가하였으나, 오히려 고농도인 SSP5 그룹에서 부정적인 효과가 나타났고, 지하부에서는 SSP5 그룹에서 가장 높은 항산화 활성을 보이는 것을 확인하였다. 본 연구는 약용식물의 생장 및 생리활성에 대해 최적의 재배 환경 조건을 결정하기 위한 기초 데이터로 활용할 수 있을 것이다.

This study aimed to investigate the growth parameters and antioxidant activity of Cnidium officinale under controlled temperature and carbon dioxide levels during the cultivation period. The plants were cultivated for four months, each group being set at the average temperature of the cultivation area +1.8℃/445ppm(SSP1), +3.6℃/872ppm(SSP3), and +4.4℃/1,142ppm(SSP5), respectively. During the cultivation period, the growth, Top/Root ratio, and leaf weight ratio(LWR) of C. officinale slightly decreased in SSP3 and SSP5 compared to SSP1, while the root weight ratio(RWR) increased. The antioxidant activity and related phenolic compound content in the aerial parts of C. officinale increased proportionally with temperature and CO2 concentration. However, an adverse effect was observed in the high-concentration SSP5 group. Conversely, in the roots, the SSP5 group exhibited the highest antioxidant activity. This study suggests that it can be utilized as fundamental data necessary for understanding the correlation between environmental conditions and the growth as well as physiological activities of medicinal plants.

키워드

과제정보

본 연구는 과학기술정보통신부 한국과학기술정보연구원 (J-23-NB-C02-S01)의 지원을 받아 수행되었습니다.

참고문헌

  1. RA Hussein and AA H-Anssary, "Plants Secondary Nfetabolites: The fey Drivers of the Pharmacological A ctiais of NMcinal Plants, " Herbal Medicine, Nov. 2018.
  2. E Bourgaud, A (iavot, S. Mlesi, and E Gontier, "Production of plant secondary metabolites: a historical perspective/' Plant Science, vol. 161, no. 5, pp. 8394Б1, 2001.
  3. H.S. Lee, KY. Km, S.Y. Kwon, and S.S. Kwak, "Devdo pnait of industrial transgenic plants using antioxidant enzyme genes, " Korean J. Plant Biotedmology, vol. 29, no. 2, pp. 69-77, 2002. https://doi.org/10.5010/JPB.2002.29.2.069
  4. S. Sachdev, S.A. Ansari, M.I. Ansari, M. Fujita, and M. Hasanuzzaman, "Abiotic Stress and Reactive Oxygen Species Generation, Signaling, and Defense Mechanisms," Antioxidants, vol. 10, no. 2, pp. 277, 2021.
  5. D.P. Xu, Y. Li, X Meng, T. Zhou, Y. Zhou, J. Zheng, J. J. Zhang, and HB. Li, "Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources, Int. J. Mol. Sci, vol. 18, no. 1, pp. 96, Jan 2017.
  6. N.KT. Huynh, T.Q. Cao, J.A Kim, Youn, S. Kim, MH Woo, and B.S. Min, "Anti-inflammatory activity of compounds from the rhizome of Cnidium officinale," Arch Pham Res, vol. 41, no. 10, pp. 977-965, Jun. 2018.
  7. Y.B. Yun, Y. Um, J.H Huh, H.J. Son, Y.G. Song and K. C. Lee, "Changes in Growth Characteristics and Physiological Activity of Cnidium officinale Makino according to the Climate Change Scenario (RCP)," Korean J. Medicinal Crop Sci, vol. 30, no. 6, pp. 450-461, 2022. https://doi.org/10.7783/KJMCS.2022.30.6.450
  8. D.H. Jeong, K.Y. Kim, H.W. Раrk, C.R. Jung, H.J. Kim, and K.S. Jeon, "Growth Chracteristics of Ligusticum chuanxing Hort. according to Soil and Meteorological Environment by Each Cultivation," Korean J. Plant Res, vol. 34, no. 1, 64-72, 2021.
  9. M Meinshausen, S.J. Smith, K. Calvin, J.S. Daniel, M. Kainuma, J. LAmarque, K. Matsumoto, S. Montzka, S. Raper and K Riahi, "The RCP greenhouse gas concent rations and their extaisions from 1765 to 2300," Climatic Change, vol. 109, pp. 213-241, Aug. 2011. https://doi.org/10.1007/s10584-011-0156-z
  10. V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (eds.), "Climate Change 2021: The Physical Science Basis,." Working Group I Contribution to the IPSS Sixth Assessment Report, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, Doi:10.1017/9781009157896.
  11. K.M. Lee, H.R. Кim, H. Lim, and Y.H. You, "Effect of elevated CO2 concentration and temperature on the growth and ecophysiological responses of ginseng (Panax ginseng CA Meyer),'' Korean J. Crop Sci, vol. 57, no. 2, pp. 106-112, 2012. https://doi.org/10.7740/kjcs.2012.57.2.106
  12. Z. Xu, H. Shimizu, Y. Yagasaki, S. Ito, Y. Zheng, and G. Zhou, "Interactive effects of elevated СО2, drought, and warning on plants," J. Plant Growth, Regul, vol. 3 2, no. 4, pp. 692-707, Apr. 2013. https://doi.org/10.1007/s00344-013-9337-5
  13. A. Lamichaney, K. Tewari, P.S. Basu, P.K Katiyar, and N.P. Singh, "Effect of elevated carbon-dioxide on plant growth, physiology, yield and seed quality of chickpe a (Cicer arietinum L.) in Indo-Gangetic plains," Physiol. Mol. Biol. Plant, vol. 27, no. 2, pp. 251-263, Feb. 2021. https://doi.org/10.1007/s12298-021-00928-0
  14. D. Lin, M. Xiао, J. Zhaо, Z. Li, B. Xng, X Li, M Kong, L. Li, Q. Zhang, Y. Liu, H. Chen, W Qin, H Wu, and S. Chen, "An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes, " Molecules, vol. 21, no. 10, pp. 1374 Oct. 2016.
  15. S. Sasidharan, S. Aravindran, L.Y. Latha, R Vijenthi, D. Saravanan and S. Amutha, "In vitro antioxidant activity and hepatoprotective effects of Lentinula edodes against paracetamol-induced hepatotoxicity, " Molecules, vol. 15, pp. 4478-4489, Jun. 2010. https://doi.org/10.3390/molecules15064478
  16. I. Grzegorczyk-Karolak, M. Krzeminska, A.K. Kiss, M.A. Olszewska, and A. Owczarek, "Phytochemical Profile and Antioxidant Activity of Aerial and Underground Parts of Salvia bulleyana Diels. Plants," Metabolites, vol. 10, no. 12, pp. 497, 2020.
  17. C.C. Chang, M.H. Yang, H.M. Wen and J.C. Chem, "Estimation of total flavonoid content in propolis by two complementary colometric methods," J. Food Drug Anal, vol. 10, pp. 178-182, 2002. https://doi.org/10.38212/2224-6614.2748
  18. D. Marinova, F. Ribarova and M Atanassova, "Total phenolics and total flavonoids in Bulgarian fruits and vegetables," J. University of Chem Technol. Metallurgy, vol. 40, pp. 255-260, Jan 2005.
  19. R.E. Will, S.M. Wilson, C.B. Zou, and T.C. Hennessey, "Increased vapor pressure deficit due to higher tempera tore leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone," New Phytologist, vol. 200, no. 2, pp. 366-374, May 2013. https://doi.org/10.1111/nph.12321
  20. M. Muthusamy, J.E. Hwang, S.H. Km, J.A. Kim, M.J. Jeong, H.C. Park, and S.I. Lee, "Elevated carbon dioxide significantly improves ascorbic add content, antioxidative properties and restricted biomass production in cruciferous vegetable seedlings, " Plant Biotechnol. Rep, vol. 13, pp. 293-304, May 2019. https://doi.org/10.1007/s11816-019-00542-3