DOI QR코드

DOI QR Code

전기화학적 물 분해 시스템에서 산소발생반응을 위한 Co와 Mo 기반 촉매의 최근 연구 동향

Research on Co- and Mo-Based Catalysts for the Oxygen Evolution Reaction in Electrochemical Water Splitting System

  • 박준성 (한경국립대학교 식품생명화학공학부) ;
  • 정원석 (한경국립대학교 식품생명화학공학부) ;
  • 부종찬 (한경국립대학교 식품생명화학공학부)
  • Junseong Park (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Won Suk Jung (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Jong Chan Bu (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
  • 투고 : 2023.10.28
  • 심사 : 2023.11.20
  • 발행 : 2023.11.30

초록

급격한 온실가스 배출량 증가로 인해 지구 온난화가 심화되고 있다. 이로 인해 탄소중립의 필요성과 이행이 더욱 절실해졌다. 이를 위해 여러 가지 신재생에너지 중 수소에 대한 관심이 부각되고 있다. 수소는 지구 상에 풍부한 자원이며 무탄소 전원으로 친환경적이다. 궁극적으로 물의 전기분해에 의해 친환경 수소를 얻을 수 있다. 하지만 산소 발생 반응에 사용되는 촉매는 고가이며 희귀하고 촉매의 내구성에 문제가 있어 어려움을 겪고 있기 때문에 비귀금속 촉매의 개발이 필요하다. 본 총설에서는 최근 발표된 산소 발생 촉매 중 비귀금속 촉매인 Co와 Mo 기반의 촉매를 정리, 요약하여 소개하고 있다. 이를 통해 비귀금속 촉매의 활성과 내구성을 증가시키기 위한 촉매의 특성 설계를 이해하는 데 도움이 될 것이다.

Global warming is getting worse since a dramatic increase in greenhouse gas emissions recently. As a result, the necessity and implementation of carbon neutrality is required more urgently. To do this, among various new and renewable energies, attention in hydrogen arises. Hydrogen as a carbon-free power source is an abundant resource on Earth and is eco-friendly. Eventually, perfectly eco-friendly hydrogen can be obtained through electrolysis of water. However, the catalyst used in the oxygen evolution reaction is rare and expensive, and has a durability issue. Consequently, the development of a non-precious metal catalyst is necessary. In this review paper, we summarize and introduce Co- and Mo- based catalysts among recently announced oxygen evolution catalysts. This will help understand the design of catalyst to increase the activity and durability of non-precious metal catalysts.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구과제(No. 2020R1C1C1004206)이다.

참고문헌

  1. C. H. Lee, H. C. Jeon, D. W. Shin, J. Y. Park, and S. H. Ryu, A Preliminary Study for Developing and Monitoring Korea's Net Zero Scenarios, Korea Environment Institute, Korea (2021). 
  2. S. Y. Lee, Y. G. Yang, S. H. Kim, H. J. Shin, and M. W. Sun, A Study on Strengthening and Promoting the National Carbon-Neutrality Strategy, Korea Environment Institute, Korea (2022). 
  3. H. J. Hwang, Y. S. Lee, N. H. Kwon, Y. D. Yoo, and H. J. Lee, Economic feasibility analysis of an overseas green hydrogen supply chain, Transactions of the Korean Hydrogen and New Energy Society, 33(6), 616-622 (2022).  https://doi.org/10.7316/KHNES.2022.33.6.616
  4. S.-K. Ryi, J.-Y. Lee, C.-H. Kim, H. Lim, and H.-Y. Jung, Technical trends of hydrogen production, Clean Technol., 23(2), 121-132 (2017). 
  5. J. Park, C.-H. Kim, H.-S. Cho, S.-K. Kim, and W.-C. Cho, Techno-economic analysis of green hydrogen production system based on renewable energy sources, Transctions of the Korean Hydrogen and New Energy Society, 31(4), 337-344 (2020).  https://doi.org/10.7316/KHNES.2020.31.4.337
  6. H. Cho, W. Cho and C. Kim, Low-temperature alkaline water electrolysis, KIC News, 21(5), 23-40 (2018). 
  7. Y. A. Kim, B. J. Lee, H. Y. Kim, and Y. T. Kim, Research and development trends of alkaline water electrolysis catalyst materials and systems, Trends in Metals & Materials Engineering, 34, 55-66 (2021). 
  8. I. Khan, N. Baig, A. Bake, M. Haroon, M. Ashraf, A. Al-Saadi, M. N. Tahir, and S. H. Wooh, Robust electrocatalysts decorated three-dimensional laser-induced graphene for selective alkaline OER and HER, Carbon, 213, 118292 (2023). 
  9. B. K. Martini and G. Maia, Using a combination of Co, Mo, and Pt oxides along with graphene nanoribbon and MoSe2 as efficient catalysts for OER and HER, Electrochim. Acta, 391, 138907 (2021). 
  10. B. J. Rani, S. S. Pradeepa, Z. M. Hansan, G. Ravi, R. Yuvakkumar, and S. I. Hong, Supercapacitor and OER activity of transition metal (Mo, Co, Cu) sulphides, J. Phys. Chem. Solids, 138, 109240 (2020). 
  11. M. J. Goujani and M. Alizadeh, One-step electrodeposition of Co-Fe electrocatalysts with micro/nano-cauliflower like structure for highly efficient oxygen evolution reaction (OER), J. Alloys Compd., 960, 170557 (2023). 
  12. Q. Kong, W. Bai, F. Bai, X. An, W. Feng, F. Zhou, Q. Chen, Q. Wang, and C. Sun, FeCoNi ternary spinel oxides nanosheets as high performance water oxidation electrocatalyst, ChemCatChem, 12(8), 2209-2214 (2020).  https://doi.org/10.1002/cctc.202000004
  13. G. Li, F. Yin, Z. Lei, X. Zhao, X. He, Z. Li, and X. Yu, Se-doped cobalt oxide nanoparticle as highly-efficient electrocatalyst for oxygen evolution reaction, Int. J. Hydrogen Energy, 47(1), 216-227 (2022).  https://doi.org/10.1016/j.ijhydene.2021.10.001
  14. R. A. E. Acedera, G. Gupta, M. Mamlouk, and M. D. L. Balela, Solution combustion synthesis of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium, J. Alloys Compd., 836, 154919 (2020). 
  15. A. Saad, D. Liu, Y. Wu, Z. Song, Y. Li, T. Najam, K. Zong, P. Tsiakaras, and X. Cai, Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance, Appl. Catal. B, 298, 120529 (2021). 
  16. L. Bai, C.-S. Hsu, D. T. L. Alexander, H. M. Chen, and X. Hu, A cobalt-iron double-atom catalyst for the oxygen evolution reaction, J. Am. Chem. Soc., 141(36), 14190-14199 (2019).  https://doi.org/10.1021/jacs.9b05268
  17. X. Wu, Y. Lin, Y. Ji, D. Zhou, Z. Liu, and X. Sun, Insights into the enhanced catalytic activity of Fe-doped LiCoPO4 for the oxygen evolution reaction, ACS Appl. Energy Mater., 3(3), 2959-2965 (2020).  https://doi.org/10.1021/acsaem.0c00036
  18. J. Wang and H. C Zeng, CoHPi nanoflakes for enhanced oxygen evolution reaction, ACS Appl. Mater. Interfaces, 10(7), 6288-6298 (2018).  https://doi.org/10.1021/acsami.7b17257
  19. C. Wang, H. Xu, Y. Wang, H. Shang, L. Jin, F. Ren, T. Song, J. Guo, and Y. Du, Hollow V-doped CoM x (M = P, S, O) nanoboxes as efficient OER electrocatalysts for overall water splitting, Inorg. Chem., 59(16), 11814-11822 (2020).  https://doi.org/10.1021/acs.inorgchem.0c01832
  20. J. Chen, H. Li, S. Chen, J. Fei, C. Liu, Z. Yu, K. Shin, Z. Liu, L. Song, G. Henkelman, L. Wei, and Y. Chen, Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts, Adv. Energy Mater., 11(11), 2003412 (2021). 
  21. J. Chen, S. Li, Z. Li, G. He, and Y. Li, Sulfur-doped CoFe (oxy)hydroxides synthesized by room-temperature activation for efficient oxygen evolution, Mater. Lett., 324, 132641 (2022). 
  22. S. Upadhyay and O. P. Pandey, Effect of Se content on the oxygen evolution reaction activity and capacitive performance of MoSe2 nanoflakes, Electrochim. Acta, 412, 140109 (2022). 
  23. B. Wang, F. Shi, Y. Sun, L. Yan, X. Zhang, B. Wang, and W. Sun, Ni-enhanced molybdenum carbide loaded N-doped graphitized carbon as bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci., 572, 151480 (2022). 
  24. D. C. Nguyen, T. L. L. Doan, S. Prabhakaran, D. T. Tran, D. H. Kin, J. H. Lee, and N. H. Kim, Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR, Nano Energy, 82, 105750 (2021). 
  25. X. Tan, Z. Duan, H. Liu, X. Wu, and Y.-R. Cho, Core-shell structured MoS2/Ni9S8 electrocatalysts for high performance hydrogen and oxygen evolution reactions, Mater. Res. Bull., 146, 111626 (2022). 
  26. L. Ma, Z. Liu, T. Chen, Y. Liu, and G. Fang, Aluminum doped nickel-molybdenum oxide for both hydrogen and oxygen evolution reactions, Electrochim. Acta, 355, 136777 (2020). 
  27. S. Khatun, K. Shimizu, S. Singha, R. Saha, S. Watanabe, and P. Roy, Defect enriched hierarchical iron promoted Bi2MoO6 hollow spheres as efficient electrocatalyst for water oxidation, Chem. Eng. J., 426, 131884 (2021). 
  28. R. He, M. Li, W. Qiao, and L. Feng, Fe doped Mo/Te nanorods with improved stability for oxygen evolution reaction, Chem. Eng. J., 423, 130168 (2021). 
  29. B. Zhang, F. Yang, X. Liu, N. Wu, S. Che, and Y. Li, Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting, Appl. Catal. B, 298, 120494 (2021). 
  30. Y. Wang, R. Dong, P. Tan, H. Liu, H. Liao, M. Jiang, Y. Liu, L. Yang, and J. Pan, Investigating the active sites in molybdenum anchored nitrogen-doped carbon for alkaline oxygen evolution reaction, J. Colloid Interface Sci., 609, 617-626 (2022).  https://doi.org/10.1016/j.jcis.2021.11.058
  31. S. Chandrasekaran, S. Vignesh, E. Arumugam, C. Karuppiah, B. Chandran, S. Dhanushkodi, and M. Alshalwi, Investigation of improved bifunctional electrocatalytic HER and OER performances of lanthanum molybdate supported graphene oxide composite in acidic and alkaline media, Diam. Relat. Mater., 140A, 110457 (2023). 
  32. T. Li, Y. Hu, X. Pan, J. Yin, Y. Li, Y. Wang, Y. Zhang, H. Sun, and Y. Tang, N-carbon supported hierarchical Ni/Ni0.2Mo0.8N nanosheets as high-efficiency oxygen evolution electrocatalysts, Chem. Eng. J., 392, 124845 (2020). 
  33. S. J. Patil, N. R. Chodankar, S.-K. Hwang, P. A. Shinde, G. S. R. Raju, K. S. Ranjith, Y. S. Huh, and Y.-K. Han, Co-metal-organic framework derived CoSe2@MoSe2 core-shell structure on carbon cloth as an efficient bifunctional catalyst for overall water splitting, Chem. Eng. J., 429, 132379 (2022). 
  34. X. Wang, L. Yang, C. Xing, X. Han, R. Du, R. He, P. Guardia, J. Arbiol, and A. Cabot, MOF-derived ultrathin cobalt molybdenum phosphide nanosheets for efficient electrochemical overall water splitting, Nanomaterials, 12(7), 1098 (2022). 
  35. X. Zhang, A. Wu, D. Wang, Y. Jiao, H. Yan, C. Jin, Y. Xie, and C. Tian, Fine-tune the electronic structure in Co-Mo based catalysts to give easily coupled HER and OER catalysts for effective water splitting, Appl. Catal. B, 328, 122474 (2023).