• Title/Summary/Keyword: Co-based catalysts

Search Result 171, Processing Time 0.025 seconds

Heterogeneous Catalysts Fabricated by Atomic Layer Deposition

  • Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.128-128
    • /
    • 2013
  • Fabrication of heterogeneous catalysts using Atomic Layer Deposition (ALD) has recently been attracting attention of surface chemists and physicists. In this talk, I will present recent results about structures and chemical activities of various catalysts prepared by ALD, particularly focusing on Ni-based catalysts. Ni has been considered as potential catalysts for $CO_2$ reforming of methane (CRM); however, Ni often undergoes rapid decrease in catalytic activity with time, and therefore, application of Ni as catalysts for CRM has been regarded as difficult so far. Deactivation of Ni catalysts during CRM reaction is from either coke formation on Ni surface or sintering of Ni particles during reaction. Two different strategies have been used for enhancing stability of Ni-based catalysts; $TiO_2$ nanoparticles were deposited on micrometer-size Ni particles by ALD, which turned out to reduce coke formation on Ni surfaces. Ni nanoparticles deposited by ALD on mesoporous silica showed high activity and long-term stability from CRM without coke deposition and sintering during CRM reaction. Ni-based catalysts have been also used for oxidation of toluene, which is one of the most notorious gases responsible for sick-building syndrome. It was shown that onset-temperature of Ni catalysts for toluene oxidation is as low as $120^{\circ}C$. At $250\circ}C$, total oxidation of toluene to $CO_2$ with a 100% conversion was found.

  • PDF

In Situ-DRIFTS Study of Rh Promoted CuCo/Al2O3 for Ethanol Synthesis via CO Hydrogenation

  • Li, Fang;Ma, Hongfang;Zhang, Haitao;Ying, Weiyong;Fang, Dingye
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2726-2732
    • /
    • 2014
  • The promoting effect of rhodium on the structure and activity of the supported Cu-Co based catalysts for CO hydrogenation was investigated in detail. The samples were characterized by DRIFTS, $N_2$-adsorption, XRD, $H_2$-TPR, $H_2$-TPD and XPS. The results indicated that the introduction of rhodium to Cu-Co catalysts resulted in modification of metal dispersion, reducibility and crystal structure. DRIFTS results of CO hydrogenation at reaction condition (P=2 MPa, $T=260^{\circ}C$) indicated the addition of 1 wt % rhodium improved hydrogenation ability of Cu-Co catalysts. The ethanol selectivity and CO conversion were both improved by 1 wt % Rh promoted Cu-Co based catalysts. The alcohol distribution over un-promoted and rhodium promoted Cu-Co based catalysts obeys A-S-F rule and higher chain growth probability was got on rhodium promoted catalyst.

Review on Application Progress of Carbon-Based Catalysts in Environmental Governance

  • Zheng, Xizhe;Huang, Yuming;Du, Changming
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In recent years, carbon-based catalysts have become a research hotspot in environmental governance applications. Carbon-based catalysts have large surface areas, porous structures, multi-surface functional groups and excellent electron transfer capabilities, and can synergistically exhibit adsorption and catalytic performance. This article reviews the research progress of carbon-based catalysts in environmental governance, mainly including its application in wastewater treatment, exhaust gas purification and soil remediation. In view of the current difficulties in the research of carbon-based catalysts, the development prospects are proposed. We hope that this review will provide convenience for new entrants and researchers intending to employ carbon-based catalysts for the remediation of contaminated environment.

Research on Co- and Mo-Based Catalysts for the Oxygen Evolution Reaction in Electrochemical Water Splitting System (전기화학적 물 분해 시스템에서 산소발생반응을 위한 Co와 Mo 기반 촉매의 최근 연구 동향)

  • Junseong Park;Won Suk Jung;Jong Chan Bu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.64-70
    • /
    • 2023
  • Global warming is getting worse since a dramatic increase in greenhouse gas emissions recently. As a result, the necessity and implementation of carbon neutrality is required more urgently. To do this, among various new and renewable energies, attention in hydrogen arises. Hydrogen as a carbon-free power source is an abundant resource on Earth and is eco-friendly. Eventually, perfectly eco-friendly hydrogen can be obtained through electrolysis of water. However, the catalyst used in the oxygen evolution reaction is rare and expensive, and has a durability issue. Consequently, the development of a non-precious metal catalyst is necessary. In this review paper, we summarize and introduce Co- and Mo- based catalysts among recently announced oxygen evolution catalysts. This will help understand the design of catalyst to increase the activity and durability of non-precious metal catalysts.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Effects of $SiO_2$ on Catalytic Properties of Iron-Based Catalysts for Fischer-Tropsch Synthesis (FT 합성반응용 철촉매에 미치는 촉매특성에 미치는 $SiO_2$ 첨가효과)

  • Chun, Dong-Hyun;Kim, Hak-Joo;Hyun, Sun-Taek;Yang, Jung-Hoon;Lee, Ho-Tae;Yang, Jung-Il;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.861-862
    • /
    • 2009
  • Precipitated iron-based catalysts are highly promising for the Fischer-Tropsch synthesis (FTS), in particular for the low temperature FTS below $280^{\circ}C$, because of their high activity and low cost. $SiO_2$ is an essential promoter for the precipitated iron-based catalysts to improve the attrition strength and physical stability. In this study, we carried out FTS over precipitated iron-based catalysts with and without $SiO_2$ in a fixed-bed reactor. The catalysts were prepared by a conventional co-precipitation method. In case of the catalysts with $SiO_2$, we used two comparative preparation methods, i.e., incorporation of $SiO_2$ before precipitation (denoted as precipitated $SiO_2$) and after precipitation (denoted as binder $SiO_2$), respectively. The addition of $SiO_2$ crucially affects both physico-chemical properties and catalytic peformance of precipitated iron-based catalysts.

  • PDF

CO2 reforming of methane based on TiO2/Ni-based catalysts

  • Kim, Dong-Wun;Seo, Hyun-Ook;Kim, Kwang-Dae;Dey, Nilay Kumar;Kim, Myoung-Joo;Jeong, Myoung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.60-60
    • /
    • 2010
  • CO2 reforming of methane (CRM) based on Ni catalysts was studied using temperature programmed reaction (TPR). The onset temperature of the CRM reaction was increased in a repeated TPR experiments. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy showed formation of graphite structures on Ni during CRM reaction, which deactivate Ni-surfaces. Attempts were made for inhibiting deactivation of Ni surfaces and reducing onset-temperature of the CRM reaction by various surface modification techniques, which will be presented in this poster.

  • PDF

Attrition Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 마모특성)

  • Ryu, Hojung;Lee, Dongho;Lee, Seungyong;Jin, Gyoungtae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Attrition characteristics of WGS catalysts for pre-combustion $ CO_2$ capture were investigated to check attrition loss of those catalysts, to check change of particle size distribution during attrition tests, and to determine solid circulation direction of WGS catalysts in a SEWGS system. The cumulative attrition losses of two catalysts increased with increasing time. However, attrition loss under humidified condition was lower than that under non-humidified condition case for long-term attrition tests. Between two catalysts, attrition loss of PC-29 catalyst was higher than that of commercial catalyst for long-term attrition tests. However, the commercial catalyst generated much more fines than PC-29 catalyst during attrition. Therefore, we conclude that the PC-29 catalyst is more suitable for fluidized bed operation if we take into account the separation efficiency of cyclone. Based on the results from the tests for the effect of humidity on the attrition loss, we selected solid circulation direction from SEWGS reactor to regeneration reactor because the SEWGS reactor contains more water vapor than regeneration reactor.

Catalytic Oxidation of Aromatic Compounds over Spent Ni-Mo and Spent Co-Mo based Catalysts: Effect of Physico-chemical Pretreatments (폐 Ni-Mo 및 폐 Co-Mo계 촉매상에서 방향족 화합물의 촉매산화: 물리화학적 전처리 효과)

  • Shim, Wang Geun;Kang, Ung Il;Kim, Chai
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Transition metal based spent catalysts (Ni-Mo and Co-Mo), which were scrapped from the petrochemical industry, were reused for the removal processes of volatile organic compounds (VOCs). Especially the optimum regeneration procedures were determined using the removal efficiency of VOCs. In this work, the spent Ni-Mo and spent Co-Mo catalysts were pretreated with different physic-chemical treatment procedure: 1) acid aqueous solution, 2) alkali solution, 3) chemical agent and 4) steam. The various characterization methods of spent and its regenerated catalysts were performed using nitrogen adsorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS). It was found that all spent catalysts were found to be potentially applicable catalysts for catalytic oxidation of benzene. The experimental results also indicated that among the employed physico-chemical pretreatment methods, the oxalic acid aqueous (0.1 N, $C_2H_2O_4$) pretreatment appeared to be the most efficient in increasing the catalytic activity, although the catalytic activity of spent Ni-Mo and spent Co-Mo catalysts in the oxidation of benzene were greatly dependent on the pretreatment conditions. The pretreated spent catalysts at optimum condition could be also applied for removing other aromatic compounds (Toluene/Xylene).

$SO_3$ Decomposition Catalysis in SI Cycle to to Produce Hydrogen (SI 원자력 수소생산을 위한 $SO_3$ 분해반응촉매에 관한 연구)

  • Kim, Tae-Ho;Shin, Chae-Ho;Joo, Oh-Shim;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Fe, Ni and Co, typical active components, were dispersed on $Al_2O_3$ and $TiO_2$ for $SO_3$ decomposition. $SO_3$ decomposition was conducted at the temperature ranges from $750^{\circ}C$ to $950^{\circ}C$ using the prepared catalysts. Alumina based catalysts showed the surface areas higher than Titania based catalysts, which resulted from spinel structure formation of alumina based catalysts. Catalytic $SO_3$ decomposition reaction rates were in the order of Fe>Co${\gg}$Ni. The metal sulfate decomposition temperature were in the order of Ni>Co>Fe from TGA/DTA analysis of metal sulfate. During $SO_3$ decomposition, metal sulfate can form on the catalysts. $SO_2$ and $O_2$ can be produced from the decomposition of metal sulfate. In that point of view, the less is the metal sulfate deomposition temperature, the higher can be the $SO_3$ decomposition activity of the metal component. Therefore, it can be concluded that metal component with the low metal sulfate decomposition temperature is the pre-requisite condition of the catalysts for $SO_3$ decomposition reaction.