DOI QR코드

DOI QR Code

The detection of Toxoplasma gondii ME49 infections in BALB/c mice using various techniques

  • Hae-Ji Kang (Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences) ;
  • Jie Mao (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Min-Ju Kim (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Keon-Woong Yoon (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Gi-Deok Eom (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Ki-Back Chu (Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University) ;
  • Eun-Kyung Moon (Department of Medical Zoology, School of Medicine, Kyung Hee University) ;
  • Fu-Shi Quan (Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University)
  • Received : 2023.04.14
  • Accepted : 2023.08.23
  • Published : 2023.11.30

Abstract

Toxoplasma gondii infections are primarily diagnosed by serological assays, whereas molecular and fluorescence-based techniques are garnering attention for their high sensitivity in detecting these infections. Nevertheless, each detection method has its limitations. The toxoplasmosis detection capabilities of most of the currently available methods have not been evaluated under identical experimental conditions. This study aimed to assess the diagnostic potential of enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence (IF) in BALB/c mice experimentally infected with various doses of T. gondii ME49. The detection of toxoplasmosis from sera and brain tissues was markedly enhanced in mice subjected to high infection doses (200 and 300 cysts) compared to those subjected to lower doses (10 and 50 cysts) for all the detection methods. Additionally, increased B1 gene expression levels and cyst sizes were observed in the brain tissues of the mice. Importantly, IHC, IF, and ELISA, but not RT-PCR, successfully detected T. gondii infections at the lowest infection dose (10 cysts) in the brain. These findings may prove beneficial while designing experimental methodologies for detecting T. gondii infections in mice.

Keywords

Acknowledgement

This study was financially supported by the Core Research Institute (CRI) Program, the Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education (NRF2018R1A6A1A03025124).

References

  1. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 2018;13(6):612-632. https//doi.org/10.1177/1747493018778713 
  2. Nayeri T, Sarvi S, Daryani A. Toxoplasmosis: targeting neurotransmitter systems in psychiatric disorders. Metab Brain Dis 2022;37(1):123-146. https//doi.org/10.1007/s11011-021-00824-2 
  3. Jones JL, Dargelas V, Roberts J, Press C, Remington JS, et al. Risk factors for Toxoplasma gondii infection in the United States. Clin Infect Dis 2009;49(6):878-884. https//doi.org/10.1086/605433 
  4. Suzuki Y, Wang X, Jortner BS, Payne L, Ni Y, et al. Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells. Am J Pathol 2010;176(4):1607-1613. https//doi.org/10.2353/ajpath.2010.090825 
  5. Torres L, Robinson SA, Kim DG, Yan A, Cleland TA, et al. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer's disease in wild-type, C57BL/6 mice. J Neuroinflammation 2018;15(1):57. https//doi.org/10.1186/s12974-018-1086-8 
  6. Evangelista FF, Costa-Ferreira W, Mantelo FM, Beletini LF, de Souza AH, et al. Rosuvastatin revert memory impairment and anxiogenic-like effect in mice infected with the chronic ME-49 strain of Toxoplasma gondii. PLoS One 2021;16(4):e0250079. https//doi.org/10.1371/journal.pone.0250079 
  7. Hegazy MK, Saleh NE, Aboukamar WA. Detection of chronic toxoplasmosis in the brain of mice using loop-mediated isothermal amplification (LAMP) and conventional PCR. Exp Parasitol 2023;251:108556. https//doi.org/10.1016/j.exppara.2023.108556 
  8. Rahumatullah A, Khoo BY, Noordin R. Triplex PCR using new primers for the detection of Toxoplasma gondii. Exp Parasitol 2012;131(2):231-238. https//doi.org/10.1016/j.exppara.2012.04.009 
  9. Bezerra ECM, Dos Santos SV, Dos Santos TCC, de Andrade HFJ, Meireles LR. Behavioral evaluation of BALB/c (Mus musculus) mice infected with genetically distinct strains of Toxoplasma gondii. Microb Pathog 2019;126:279-286. https//doi.org/10.1016/j.micpath.2018.11.021 
  10. Kikuchi T, Furuta T, Kojima S. Kinetics of the nucleoside triphosphate hydrolase of Toxoplasma gondii in mice with acute and chronic toxoplasmosis. Ann Trop Med Parasitol 2002;96(1):35-41. https//doi.org/10.1179/000349802125000493 
  11. Rahumatullah A, Khoo B, Noordin R. Development of triplex real-time PCR and detection of Toxoplasma gondii DNA in infected mice tissues and spiked human samples. Trop biomed 2015;32(2):376-385. 
  12. Pina-Vazquez C, Saavedra R, Herion P. A quantitative competitive PCR method to determine the parasite load in the brain of Toxoplasma gondii-infected mice. Parasitol Int 2008;57(3):347-353. https//doi.org/10.1016/j.parint.2008.03.001 
  13. Yoon KW, Chu KB, Kang HJ, Kim MJ, Eom GD, et al. Mucosal administration of recombinant baculovirus displaying Toxoplasma gondii ROP4 confers protection against T. gondii challenge infection in mice. Front Cell Infect Microbiol 2021;11:735191. https//doi.org/10.3389/fcimb.2021.735191 
  14. Kang HJ, Lee SH, Kim MJ, Chu KB, Lee DH, et al. Influenza virus-like particles presenting both Toxoplasma gondii ROP4 and ROP13 enhance protection against T. gondii infection. Pharmaceutics 2019;11(7):342. https//doi.org/10.3390/pharmaceutics11070342 
  15. Chu KB, Quan FS. Advances in Toxoplasma gondii vaccines: current strategies and challenges for vaccine development. Vaccines (Basel) 2021;9(5):413. https//doi.org/10.3390/vaccines9050413 
  16. Dubey JP. Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasit Vectors 2021;14(1):263. https//doi.org/10.1186/s13071-021-04769-4 
  17. Karshima SN, Karshima MN. Human Toxoplasma gondii infection in Nigeria: a systematic review and meta-analysis of data published between 1960 and 2019. BMC Public Health 2020;20(1):877. https//doi.org/10.1186/s12889-020-09015-7 
  18. Strang A, Ferrari RG, do Rosario DK, Nishi L, Evangelista FF, et al. The congenital toxoplasmosis burden in Brazil: systematic review and meta-analysis. Acta Trop 2020;211:105608. https//doi.org/10.1016/j.actatropica.2020.105608 
  19. Rostami A, Karanis P, Fallahi S. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection. Infection 2018;46(3):303-315. https//doi.org/10.1007/s15010-017-1111-3 
  20. Ferra BT, Holec-Gasior L, Gatkowska J, Dziadek B, Dzitko K, et al. The first study on the usefulness of recombinant tetravalent chimeric proteins containing fragments of SAG2, GRA1, ROP1 and AMA1 antigens in the detection of specific anti-Toxoplasma gondii antibodies in mouse and human sera. PLoS One 2019;14(6):e0217866. https//doi.org/10.1371/journal.pone.0217866 
  21. Attias M, Teixeira DE, Benchimol M, Vommaro RC, Crepaldi PH, et al. The life-cycle of Toxoplasma gondii reviewed using animations. Parasit Vectors 2020;13(1):588. https//doi.org/10.1186/s13071-020-04445-z 
  22. Watson GF, Davis PH. Systematic review and meta-analysis of variation in Toxoplasma gondii cyst burden in the murine model. Exp Parasitol 2019;196:55-62. https//doi.org/10.1016/j.exppara.2018.12.003 
  23. Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, et al. Temporal and spatial distribution of Toxoplasma gondii differentiation into bradyzoites and tissue cyst formation in vivo. Infect Immun 2008;76(8):3491-3501. https//doi.org/10.1128/iai.00254-08 
  24. Suzuki Y, Lutshumba J, Chen KC, Abdelaziz MH, Sa Q, et al. IFN-γ production by brain-resident cells activates cerebral mRNA expression of a wide spectrum of molecules critical for both innate and T cell-mediated protective immunity to control reactivation of chronic infection with Toxoplasma gondii. Front Cell Infect Microbiol 2023;13:1110508. https//doi.org/10.3389/fcimb.2023.1110508 
  25. Sasai M, Yamamoto M. Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Exp Mol Med 2019;51(12):1-10. https//doi.org/10.1038/s12276-019-0353-9 
  26. Schluter D, Kaefer N, Hof H, Wiestler OD, Deckert-Schluter M. Expression pattern and cellular origin of cytokines in the normal and Toxoplasma gondii-infected murine brain. Am J Pathol 1997;150(3):1021-1035. 
  27. Araujo FG, Chiari E, Dias JC. Demonstration of Trypanosoma cruzi antigen in serum from patients with Chagas' disease. Lancet 1981;1(8214):246-249. https//doi.org/10.1016/s0140-6736(81)92088-2 
  28. Kim MJ, Lee SH, Kang HJ, Chu KB, Park H, et al. Virus-like particle vaccine displaying Toxoplasma gondii apical membrane antigen 1 induces protection against T. gondii ME49 infection in mice. Microb Pathog 2020;142:104090. https//doi.org/10.1016/j.micpath.2020.104090