DOI QR코드

DOI QR Code

Functional characterization of Clonorchis sinensis choline transporter

  • Jeong Yeon Won (Department of Parasitology and Tropical Medicine, Inha University School of Medicine) ;
  • Johnsy Mary Louis (Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University) ;
  • Eui Sun Roh (Department of Parasitology and Tropical Medicine, Inha University School of Medicine) ;
  • Seok Ho Cha (Department of Parasitology and Tropical Medicine, Inha University School of Medicine) ;
  • Jin-Hee Han (Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University)
  • Received : 2023.08.04
  • Accepted : 2023.09.27
  • Published : 2023.11.30

Abstract

Clonorchis sinensis is commonly found in East Asian countries. Clonorchiasis is prevalent in these countries and can lead to various clinical symptoms. In this study, we used overlap extension polymerase chain reaction (PCR) and the Xenopus laevis oocyte expression system to isolate a cDNA encoding the choline transporter of C. sinensis (CsChT). We subsequently characterized recombinant CsChT. Expression of CsChT in X. laevis oocytes enabled efficient transport of radiolabeled choline, with no detectable uptake of arginine, α-ketoglutarate, p-aminohippurate, taurocholate, and estrone sulfate. Influx and efflux experiments showed that CsChT-mediated choline uptake was time- and sodium-dependent, with no exchange properties. Concentration-dependent analyses of revealed saturable kinetics consistent with the Michaelis-Menten equation, while nonlinear regression analyses revealed a Km value of 8.3 µM and a Vmax of 61.0 pmol/oocyte/h. These findings contribute to widen our understanding of CsChT transport properties and the cascade of choline metabolisms within C. sinensis.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2017R1D1A1B03034588). Adult Xemopus laevies was obtained from the Korean Xenopus Resource Center for Research.

References

  1. Kim EM, Kim JL, Choi SY, Kim JW, Kim S, et al. Infection status of freshwater fish with metacercariae of Clonorchis sinensis in Korea. Parasites Hosts Dis 2008;46(4):247-251. https://doi.org/10.3347/kjp.2008.46.4.247
  2. Qian MB, Chen YD, Liang S, Yang GJ, Zhou XN. The global epidemiology of clonorchiasis and its relation with cholangiocarcinoma. Infect Dis Poverty 2012;1(1):4. https://doi.org/10.1186/2049-9957-1-4
  3. Doanh PN, Nawa Y. Clonorchis sinensis and Opisthorchis spp. in Vietnam: current status and prospects. Trans R Soc Trop Med Hyg 2016;110(1):13-20. https://doi.org/10.1093/trstmh/trv103
  4. Tang ZL, Huang Y, Yu XB. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infect Dis Poverty 2016;5(1):71. https://doi.org/10.1186/s40249-016-0166-1
  5. Rim HJ. Clonorchiasis: an update. J Helminthol 2005;79(3):269-281. https://doi.org/10.1079/joh2005300
  6. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, et al. A review of human carcinogens--part B: biological agents. Lancet Oncol 2009;10(4):321-332. https://doi.org/10.1016/s1470-2045(09)70096-8
  7. Park SK, Friedrich L, Yahya NA, Rohr CM, Chulkov EG, et al. Mechanism of praziquantel action at a parasitic flatworm ion channel. Sci Transl Med 2021;13(625):eabj5832. https://doi.org/10.1126/scitranslmed.abj5832
  8. Robertson AP, Martin RJ. Ion-channels on parasite muscle: pharmacology and physiology. Invert Neurosci 2007;7(4):209-217. https://doi.org/10.1007/s10158-007-0059-x
  9. You H, Liu C, Du X, McManus DP. Acetylcholinesterase and nicotinic acetylcholine receptors in schistosomes and other parasitic helminths. Molecules 2017;22(9):1550. https://doi.org/10.3390/molecules22091550
  10. Hu Y, Xiao SH, Aroian RV. The new anthelmintic tribendimidine is an L-type (levamisole and pyrantel) nicotinic acetylcholine receptor agonist. PLoS Negl Trop Dis 2009;3(8):e499. https://doi.org/10.1371/journal.pntd.0000499
  11. Robertson AP, Puttachary S, Buxton SK, Martin RJ. Tribendimidine: mode of action and nAChR subtype selectivity in Ascaris and Oesophagostomum. PLoS Negl Trop Dis 2015;9(2):e0003495. https://doi.org/10.1371/journal.pntd.0003495
  12. Ancelin ML, Torpier G, Vial HJ, Capron A. Choline incorporation by Schistosoma mansoni: distribution of choline metabolites during development and after sexual differentiation. J Parasitol 1987;73(3):530-535. https://doi.org/10.2307/3282131
  13. Guidi A, Petrella G, Fustaino V, Saccoccia F, Lentini S, et al. Drug effects on metabolic profiles of Schistosoma mansoni adult male parasites detected by 1H-NMR spectroscopy. PLoS Negl Trop Dis 2020;14(10):e0008767. https://doi.org/10.1371/journal.pntd.0008767
  14. Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J 2006;20(1):43-49. https://doi.org/10.1096/fj.05-4707com
  15. Zeisel SH, da Costa KA. Choline: an essential nutrient for public health. Nutr Rev 2009;67(11):615-623. https://doi.org/10.1111/j.1753-4887.2009.00246.x
  16. Michel V, Yuan Z, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med 2006;231(5):490-504. https://doi.org/10.1177/153537020623100503
  17. Biagini GA, Ward SA, Bray PG. Malaria parasite transporters as a drug-delivery strategy. Trends Parasitol 2005;21(7):299-301. https://doi.org/10.1016/j.pt.2005.05.013
  18. Young BW, Podesta RB. Uptake and incorporation of choline by Schistosoma mansoni adults. Mol Biochem Parasitol 1985;15(2):105-114. https://doi.org/10.1016/0166-6851(85)90112-4
  19. Macedo JP, Schmidt RS, Maser P, Rentsch D, Vial HJ, et al. Characterization of choline uptake in Trypanosoma brucei procyclic and bloodstream forms. Mol Biochem Parasitol 2013;190(1):16-22. https://doi.org/10.1016/j.molbiopara.2013.05.007
  20. Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, et al. New and emerging research on solute carrier and ATP binding cassette transporters in drug discovery and development: outlook from the international transporter consortium. Clin Pharmacol Ther 2022;112(3):540-561. https://doi.org/10.1002/cpt.2627
  21. Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, et al. Geographical distribution and genetic diversity of Plasmodium vivax reticulocyte binding protein 1a correlates with patient antigenicity. PLoS Negl Trop Dis 2022;16(6):e0010492. https://doi.org/10.1371/journal.pntd.0010492
  22. Truant AL, Elliott SH, Kelly MT, Smith JH. Comparison of formalin-ethyl ether sedimentation, formalin-ethyl acetate sedimentation, and zinc sulfate flotation techniques for detection of intestinal parasites. J Clin Microbiol 1981;13(5):882-884. https://doi.org/10.1128/jcm.13.5.882-884.1981
  23. Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 2000;275(6):4507-4512. https://doi.org/10.1074/jbc.275.6.4507
  24. Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, et al. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem 1999;274(19):13675-13680. https://doi.org/10.1074/jbc.274.19.13675
  25. Yamaoka K, Tanigawara Y, Nakagawa T, Uno T. A pharmacokinetic analysis program (multi) for microcomputer. J Pharmacobiodyn 1981;4(11):879-885. https://doi.org/10.1248/bpb1978.4.879
  26. Ferguson SM, Bazalakova M, Savchenko V, Tapia JC, Wright J, et al. Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc Natl Acad Sci USA 2004;101(23):8762-8767. https://doi.org/10.1073/pnas.0401667101
  27. Canty DJ, Zeisel SH. Lecithin and choline in human health and disease. Nutr Rev 1994;52(10):327-339. https://doi.org/10.1111/j.1753-4887.1994.tb01357.x
  28. Biagini GA, Pasini EM, Hughes R, De Koning HP, Vial HJ, et al. Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. Blood 2004;104(10):3372-3377. https://doi.org/10.1182/blood-2004-03-1084
  29. Webb RA, Xue L. A novel Na+/HCO3--codependent choline transporter in the syncytial epithelium of the cestode Hymenolepis diminuta. Comp Biochem Physiol A Mol Integr Physiol 1998;119(2):553-562. https://doi.org/10.1016/s1095-6433(97)00466-2
  30. Saric J, Li JV, Wang Y, Keiser J, Bundy JG, et al. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery. PLoS Negl Trop Dis 2008;2(7):e254. https://doi.org/10.1371/journal.pntd.0000254
  31. Saric J, Li JV, Utzinger J, Wang Y, Keiser J, et al. Systems parasitology: effects of Fasciola hepatica on the neurochemical profile in the rat brain. Mol Syst Biol 2010;6:396. https://doi.org/10.1038/msb.2010.49
  32. Haga T. Molecular properties of the high-affinity choline transporter CHT1. J Biochem 2014;156(4):181-194. https://doi.org/10.1093/jb/mvu047
  33. Muramatsu I, Uwada J, Masuoka T, Yoshiki H, Sada K, et al. Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission. J Neurochem 2017;143(1):76-86. https://doi.org/10.1111/jnc.14127
  34. Loffelholz K, Klein J, Koppen A. Choline, a precursor of acetylcholine and phospholipids in the brain. Prog Brain Res 1993;98:197-200. https://doi.org/10.1016/s0079-6123(08)62399-7
  35. Chai JY. Praziquantel treatment in trematode and cestode infections: an update. Infect Chemother 2013;45(1):32-43. https://doi.org/10.3947/ic.2013.45.1.32
  36. Lee JM, Lim HS, Hong ST. Hypersensitive reaction to praziquantel in a clonorchiasis patient. Korean J Parasitol 2011;49(3):273-275. https://doi.org/10.3347/kjp.2011.49.3.273
  37. Siqueira LDP, Fontes DAF, Aguilera CSB, Timoteo TRR, Angelos MA, et al. Schistosomiasis: drugs used and treatment strategies. Acta Trop 2017;176:179-187. https://doi.org/10.1016/j.actatropica.2017.08.002
  38. Xu LL, Jiang B, Duan JH, Zhuang SF, Liu YC, et al. Efficacy and safety of praziquantel, tribendimidine and mebendazole in patients with co-infection of Clonorchis sinensis and other helminths. PLoS Negl Trop Dis 2014;8(8):e3046. https://doi.org/10.1371/journal.pntd.0003046
  39. Xiao SH, Xue J, Xu LL, Zhang YN, Qiang HQ. Comparative effect of mebendazole, albendazole, tribendimidine, and praziquantel in treatment of rats infected with Clonorchis sinensis. Parasitol Res 2011;108(3):723-730. https://doi.org/10.1007/s00436-010-2187-1
  40. Okuda T, Nomura Y, Konishi A, Misawa H. Competitive inhibition of the high-affinity choline transporter by tetrahydropyrimidine anthelmintics. Eur J Pharmacol 2021;898:173986. https://doi.org/10.1016/j.ejphar.2021.173986