DOI QR코드

DOI QR Code

서울특별시 내 독립 호우사상의 시간분포 특성 분석: 분 단위와 차첨두 상수의 조건 변화를 중심으로

A comprehensive analysis of temporal characteristics in independent rainstorm events in Seoul: focusing on changes in unit time and secondary peak constant

  • 차호영 (중앙대학교 일반대학원 스마트시티학과) ;
  • 이진욱 (하와이대학교 공과대학 토목공학과) ;
  • 전창현 (중앙대학교 공과대학 사회기반시스템공학부) ;
  • 변종윤 (중앙대학교 일반대학원 토목공학과) ;
  • 백종진 (중앙대학교 공과대학 사회기반시스템공학부)
  • Cha, Hoyoung (Department of Smart Cities, General Graduate School, Chung-Ang University) ;
  • Lee, Jinwook (Department of Civil and Environmental Engineering, College of Engineering, University of Hawaii at Moanoa,) ;
  • Jun, Changhyun (Department of Civil and Environmental Engineering, College of Engineering, Chung-Ang University) ;
  • Byun, Jongyun (Department of Civil Engineering, College of Engineering, Chung-Ang University) ;
  • Baik, Jongjin (Department of Civil and Environmental Engineering, College of Engineering, Chung-Ang University)
  • 투고 : 2023.08.17
  • 심사 : 2023.11.07
  • 발행 : 2023.11.30

초록

본 연구에서는 차첨두 상수(Secondary Peak Constant, SPC)라는 개념을 새롭게 정의하고, 서울특별시 24개의 강우 관측소 내 분 단위와 차첨두 상수에 따른 독립 호우사상의 시간분포 특성을 파악했다. 먼저, 강우량은 2000년부터 2022년까지의 지상 관측값을 활용하여, 분 단위에 따라 독립 호우사상을 분리했다. 독립 호우사상의 시간분포 특성은 분 단위에 따라 도출하고, SPC를 통해 독립 호우사상의 첨두 강우에 대한 시간분포 특성을 파악했다. 마지막으로, 독립 호우사상 내 강우의 시간분포 특성은 분 단위와 SPC에 따라 다르게 나타나는 결과를 분석하고, 그 수준을 평가했다. 그 결과, 서울특별시 내 24개 강우 관측소의 분 단위가 작은 독립 호우사상은 총 강우량, 강우 지속기간, 강우강도의 크기가 크게 나타났다. 첨두 강우의 시간분포 특성은 독립 호우사상 내 가장 큰 첨두 강우(1st Peak)가 전반적으로 Q4>Q2>Q3>Q1 순으로 나타나는 특성을 지녔다. 또한, 두 번째로 큰 첨두 강우는 독립 호우사상 내 1st Peak가 발생한 위치를 중심으로 주로 발생하는 모습을 나타냈다. 마지막으로, 다중첨두를 가진 호우사상의 비율은 SPC에 따라 다르게 나타나지만, SPC가 0.7 이하인 조건에서는 대부분 50.0% 이상을 차지했다. 독립 호우사상 내 첨두 강우의 평균 개수는 전반적으로 1.5개에서 크게는 3.4개까지 계산되었다. 본 연구에서는 분 단위에 따라 변화하는 시간분포 특성을 파악하고, SPC를 활용하여 첨두 강우의 시간분포 특성을 정량화하였다. 이를 통해, 특정 지역에 대한 독립 호우사상의 시간분포 특성은 분 단위와 SPC에 따라 정량화하여 분석할 수 있을 것으로 나타난다.

In this study, we proposed a new concept termed the Secondary Peak Constant (SPC) and discerned the temporal characteristics of independent rainstorm events based on unit time and SPC about 24 observation stations in Seoul. Utilizing rainfall observations from 2000 to 2022, independent rainstorm events discreted from rainfall data per unit time. The temporal characteristics of these events were derived according to unit time, and temporal characteristics of the peak rainfall were identified through the SPC. Finally, the temporal characteristics of independent rainstorm events were examined distinctively when analyzed by unit time and SPC. Independent rainstorm events with smaller unit time showed significantly larger total rainfall, rainfall duration, and rainfall intensity. The temporal characteristics of the largest peak rainfall (1st Peak) within independent rainstorm events followed a sequence of Q4>Q2>Q3>Q1. Additionally, the 2nd Peak rainfall predominantly occurred the location where the 1st Peak appeared. The proportion of independent rainstorm events with multiple peak rainfalls exceeded 50.0% when the SPC was 0.7 or lower. The average number of peak rainfalls within independent rainstorm events ranged from 1.5 to 3.4. This study identified the temporal characteristics of independent rainstorm events based on unit time. Then, the peak rainfall of temporal characteristics was quantified by SPC on this study. Hence, it is evident that the temporal characteristics of independent rainstorm events for specific area can be anlayzed and quantified based on unit time and SPC.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1A4A3032838). 또한, 본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었음(과제번호20230115-001,디지털뉴딜 기반 통합물관리 기술융합 플랫폼(IWRM-K)개발). 또한, 기상청 <「기상관측장비 핵심기술 및 관측자료 활용기법 개발」사업>(RS-2023-00243008)의 지원으로 수행됨.

참고문헌

  1. Adams, B.J., Fraser, H.G., Howard, C.D., and Sami Hanafy, M. (1986). "Meteorological data analysis for drainage system design." Journal of environmental Engineering, Vol. 112, No. 5, pp. 827-848.  https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(827)
  2. Azam, M., San Kim, H., and Maeng, S.J. (2017). "Development of flood alert application in Mushim stream watershed Korea." International journal of disaster risk reduction, Vol. 21, pp. 11-26.  https://doi.org/10.1016/j.ijdrr.2016.11.008
  3. Bedoya-Soto, J.M., Aristizabal, E., Carmona, A.M., and Poveda, G. (2019). "Seasonal shift of the diurnal cycle of rainfall over Medellin's valley, Central Andes of Colombia (1998-2005)." Frontiers in Earth Science, Vol. 7, 92. 
  4. Behera, P.K., Guo, Y., Teegavarapu, R.S., and Branham, T. (2010). "Evaluation of antecedent storm event characteristics for different climatic regions based on interevent time definition (IETD)." In World Environmental and Water Resources Congress 2010: Challenges of Change, Providence, RI, U.S., pp. 2441-2450. 
  5. Bezak, N., Sraj, M., and Mikos, M. (2018). "Design rainfall in engineering applications with focus on the design discharge." Engineering and mathematical topics in rainfall, Edited by Hromadka II, T.V., and Rao, P., IntechOpen., London, UK, pp. 1-15. 
  6. Chen, J., Li, Y., and Zhang, C. (2023). "The effect of design rainfall patterns on urban flooding based on the Chicago method." International Journal of Environmental Research and Public Health, Vol. 20, No. 5, 4245. 
  7. Choi, S., Joo, K., Shin, H., and Heo, J.H. (2014). "Improvement of Huff's method considering severe rainstorm events." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 985-996.  https://doi.org/10.3741/JKWRA.2014.47.11.985
  8. Dunkerley, D. (2022). "Huff quartile classification of rainfall intensity profiles ('storm patterns'): A modified approach employing an intensity threshold." CATENA, Vol. 216, 106371. 
  9. Elnazer, A.A., Salman, S.A., and Asmoay, A.S. (2017). "Flash flood hazard affected Ras Gharib city, Red Sea, Egypt: A proposed flash flood channel." Natural Hazards, Vol. 89, pp. 1389-1400.  https://doi.org/10.1007/s11069-017-3030-0
  10. Huff, F.A. (1967). "Time distribution of rainfall in heavy storms." Water Resources Research, Vol. 3, No. 4, pp. 1007-1019.  https://doi.org/10.1029/WR003i004p01007
  11. Jang, S.H., Yoon, J.H., and Yoon, Y.N. (2006) "A study on the improvement of Huff's method in Korea: I. Review of applicability of Huff's method in Korea." Journal of Korea Water Resources Association, Vol. 39, No. 9, pp. 767-777.  https://doi.org/10.3741/JKWRA.2006.39.9.767
  12. Kim, D., Han, H., Lee, H., Kim, H. S., and Kim, J. (2023a). "Development of heavy rain damage prediction technique based on optimization and ensemble method." KSCE Journal of Civil Engineering, Vol. 27, No. 5, pp. 2313-2326.  https://doi.org/10.1007/s12205-023-2099-0
  13. Kim, H.R., Moon, M., Yun, J., and Ha, K.J. (2023b). "Trends and spatio-temporal variability of summer mean and extreme precipitation across South Korea for 1973-2022." Asia-Pacific Journal of Atmospheric Sciences, pp. 1-14. 
  14. Kim, J., and Kang, J. (2023). "Development of hazard capacity factor design model for net-zero: Evaluation of the flood adaptation effects considering green-gray infrastructure interaction." Sustainable Cities and Society, Vol. 96, 104625. 
  15. Kim, Y.T., Park, M.H., and Kwon, H.H. (2020). "Spatio-temporal summer rainfall pattern in 2020 from a rainfall frequency perspective." Journal of Korea Society of Disaster & Security, Vol. 13, No. 4, pp. 93-104. 
  16. Korea Meteorological Administration (KMA) (1990). Korea, accessed 1 July 2023, . 
  17. Lee, S., Choi, Y., Lee, E., Ji, J., and Yi, J. (2022). "Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area." Journal of Korea Water Resources Association, Vol. 55, No. 4, pp. 267-278. 
  18. Ministry of Environment (ME) (2019). Guideline of design flood estimation. 
  19. Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Research on the improvement of probability rainfall. 
  20. Na, W., and Yoo, C. (2018). "Evaluation of rainfall temporal distribution models with annual maximum rainfall events in Seoul, Korea." Water, Vol. 10, No. 10, 1468. 
  21. Nguyen, D.T., and Chen, S.T. (2022). "Generating continuous rainfall time series with high temporal resolution by using a stochastic rainfall generator with a copula and modified Huff rainfall curves." Water, Vol. 14, No. 13, 2123. 
  22. Oh, T.S., and Moon, Y.I. (2008). "Conversion factor calculation of annual maximum precipitation in Korea between fixed and sliding durations." KSCE Journal of Civil and Environmental Engineering Research, Vol. 28, No. 5B, pp. 515-524. 
  23. Park, M.K., Park, M.J., and Kim, H.S. (2011). "Discussion for the ranking of annual maximum storm events." Journal of the Korean Society of Hazard Mitigation, Vol. 11, No. 5, pp. 281-292.  https://doi.org/10.9798/KOSHAM.2011.11.5.281
  24. Park, M.S., Park, S.H., Chae, J.H., Choi, M.H., Song, Y., Kang, M., and Roh, J.W. (2017). "High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea." Atmospheric Measurement Techniques, Vol. 10, No. 4, pp. 1575-1594.  https://doi.org/10.5194/amt-10-1575-2017
  25. Restrepo-Posada, P.J., and Eagleson, P.S. (1982). "Identification of independent rainstorms." Journal of Hydrology, Vol. 55, No. 1-4, pp. 303-319.  https://doi.org/10.1016/0022-1694(82)90136-6
  26. Terao, T., Islam, M. N., Hayashi, T., and Oka, T. (2006). "Nocturnal jet and its effects on early morning rainfall peak over northeastern Bangladesh during the summer monsoon season." Geophysical Research Letters, Vol. 33, No. 18, pp. 1-5.  https://doi.org/10.1029/2006GL026156
  27. Xu, J., Zhang, J., Li, M., and Wang, F. (2019). "Effect of rain peak morphology on runoff and sediment yield in Miyun water source reserve in China." Water, Vol. 11, No. 12, 2429.