DOI QR코드

DOI QR Code

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study

사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구

  • 권기범 (고려대학교 건축사회환경공학과) ;
  • 강민규 (고려대학교 건축사회환경공학과) ;
  • 황병현 (고려대학교 건축사회환경공학과) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2023.06.14
  • Accepted : 2023.08.10
  • Published : 2023.12.01

Abstract

Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

TBM 터널 프로젝트 내 불확실성으로 인한 사고를 예방하기 위해 리스크 관리는 필수적이다. 특히, 터널 막장면부터 지표면까지의 광범위한 피해를 초래할 수 있는 TBM 터널 붕괴는 더욱 신중히 관리되어야 한다. 또한, 각 TBM 터널 프로젝트의 시간과 비용의 제약으로 인해, 합리적 수준의 대응조치 계획을 수립하기 위한 리스크 우선순위를 도출할 필요가 있다. 이에 따라, 본 연구는 TBM 사고 사례조사를 통해 TBM 리스크 데이터베이스를 구축하였고, 베이즈 정리를 활용하여 지질요인의 TBM 터널 붕괴 리스크 우선순위를 도출하였다. 총 87건의 TBM 사고사례를 기반으로 3가지 사건과 5가지 지질요인을 포함한 TBM 리스크 데이터베이스가 구축되었다. 이때, 자갈층 지반, 고수압 함수대는 관련 사례 수가 적어 통계적 편향을 방지하기 위해 제외되었다. 데이터베이스에 베이즈 정리를 적용한 결과, 단층대와 연약지반은 TBM 터널 붕괴의 발생확률을 상당히 증가시키나, 그 외 3가지 지질요인(복합지반, 높은 상재압력, 팽창성 지반)은 붕괴와 낮은 상관성을 보였다. 결과적으로, 지질요인의 TBM 터널 붕괴 리스크 우선순위는 다음과 같다: 1) 단층대, 2) 연약지반, 3) 복합지반, 4) 높은 상재압력, 5) 팽창성 지반.

Keywords

Acknowledgement

This research was conducted with the support of the "National R&D Project for Smart Construction Technology (No. RS-2020-KA157074)" funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport, and managed by the Korea Expressway Corporation.

References

  1. Bennett, A. and Elman, C. (2006). "Complex causal relations and case study methods: The example of path dependence." Political Analysis, Cambridfe University Press, Vol. 14, No. 3, pp. 250-267, https://doi.org/10.1093/pan/mpj020.
  2. Broere, W. (2016). "Urban underground space: Solving the problems of today's cities." Tunnelling and Underground Space Technology, Elsevier, Vol. 55, pp. 245-248, https://doi.org/10.1016/j.tust.2015.11.012.
  3. Chang, C. S., Yeh, Y. T., Chien, T. W., Lin, J. C. J., Cheng, B. W. and Kuo, S. C. (2020). "The computation of case fatality rate for novel coronavirus (COVID-19) based on Bayes theorem: An observational study." Medicine, Wolters Kluwer Health, Vol. 99, No. 21, https://doi.org/10.1097/MD.0000000000019925.
  4. Choi, M. C. (2020). "Evaluation of analytic hierarchy process method and development of a weight modified model." Management & Information Systems Review, DAMIS, Vol. 39, No. 2, pp. 145-162, https://doi.org/10.29214/damis.2020.39.2.009 (in Korean).
  5. Chung, H., Lee, I. M., Jung, J. H. and Park, J. (2019). "Bayesian networks-based shield TBM risk management system: methodology development and application." KSCE Journal of Civil Engineering, KSCE, Vol. 23, No. 1, pp. 452-465, https://doi.org/10.1007/s12205-018-0912-y.
  6. Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A. and Sheikh, A. (2011). "The case study approach." BMC Medical Research Methodology, Springer Nature, Vol. 11, No. 1, pp. 1-9, https://doi.org/10.1186/1471-2288-11-100.
  7. Eskesen, S. D., Tengborg, P., Kampmann, J. and Veicherts, T. H. (2004). "Guidelines for tunnelling risk management: international tunnelling association, working group No. 2." Tunnelling and Underground Space Technology, Elsevier, Vol. 19, No. 3, pp. 217-237, https://doi.org/10.1016/j.tust.2004.01.001.
  8. Font-Capo, J., Vazquez-Sune, E., Carrera, J., Marti, D., Carbonell, R. and Perez-Estaun, A. (2011). "Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM)." Engineering Geology, Elsevier, Vol. 121, Nos. 1-2, pp. 46-54, https://doi.org/10.1016/j.enggeo.2011.04.012.
  9. Gong, Q., Yin, L., Ma, H. and Zhao, J. (2016). "TBM tunnelling under adverse geological conditions: an overview." Tunnelling and Underground Space Technology, Elsevier, Vol. 57, pp. 4-17, https://doi.org/10.1016/j.tust.2016.04.002.
  10. Gong, Q. M., Yin, L. J. and She, Q. R. (2013). "TBM tunneling in marble rock masses with high in situ stress and large groundwater inflow: a case study in China." Bulletin of Engineering Geology and the Environment, Springer, Vol. 72, pp. 163-172, https://doi.org/10.1007/s10064-013-0460-0.
  11. Grzegorzewski, P. (2013). "On some basic concepts in probability of IF-events." Information Sciences, Elsevier, Vol. 232, pp. 411-418, https://doi.org/10.1016/j.ins.2012.11.010.
  12. Hyun, K. C., Min, S., Choi, H., Park, J. and Lee, I. M. (2015). "Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels." Tunnelling and Underground Space Technology, Elsevier, Vol. 49, pp. 121-129, https://doi.org/10.1016/j.tust.2015.04.007.
  13. Kang, M., Kim, S., Lee, J. and Choi, H. (2022). "Development of FE model for simulating electrical resistivity survey to predict mixed ground ahead of a tunnel face." Geomechanics & Engineering, Techno-press, Vol. 29, No. 3, pp. 301-310, https://doi.org/10.12989/gae.2022.29.3.301.
  14. Kang, M., Lee, J., Kwon, K., Park, S. and Choi, H. (2023). "Laboratory simulations on hybrid non-destructive survey of electrical resistivity and induced polarization to predict geological risks ahead of a TBM tunnel." Tunnelling and Underground Space Technology, Elsevier, Vol. 135, 105066, https://doi.org/10.1016/j.tust.2023.105066.
  15. Koh, S., La, Y. S. and Kim, B. (2020). "Shield TBM trouble cases review and parameter study for the cause analysis." Journal of Korean Tunnelling and Underground Space Association, KTA, Vol. 22, No. 2, pp. 197-217, https://doi.org/10.9711/KTAJ.2020.22.2.197 (in Korean).
  16. Kwon, K., Choi, H., Oh, J. Y. and Kim, D. (2022). "A study on EPB shield TBM face pressure prediction using machine learning algorithms." Journal of Korean Tunnelling and Underground Space Association, KTA, Vol. 24, No. 2, pp. 217-230, https://doi.org/10.9711/KTAJ.2022.24.2.217 (in Korean).
  17. Kwon, K., Kang, M., Kim, D. and Choi, H. (2023). "Prioritization of hazardous zones using an advanced risk management model combining the analytic hierarchy process and fuzzy set theory." Sustainability, MDPI, Vol. 15, No. 15, 12018, https://doi.org/10.3390/su151512018.
  18. Lee, S. and Moon, J. S. (2020). "Excessive groundwater inflow during TBM tunneling in limestone formation." Tunnelling and Underground Space Technology, Elsevier, Vol. 96, 103217, https://doi.org/10.1016/j.tust.2019.103217.
  19. Lin, P., Xiong, Y., Xu, Z., Wang, W. and Shao, R. (2022). "Risk assessment of TBM jamming based on Bayesian networks." Bulletin of Engineering Geology and the Environment, Springer, Vol. 81, pp. 1-15, https://doi.org/10.1007/s10064-021-02511-z.
  20. Liu, W., Zhai, S. and Liu, W. (2019). "Predictive analysis of settlement risk in tunnel construction: a bow-tie-bayesian network approach." Advances in Civil Engineering, Hindawi, Vol. 2019, https://doi.org/10.1155/2019/2045125.
  21. Rostami, J. (2016). "Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground." Tunnelling and Underground Space Technology, Elsevier, Vol. 57, pp. 173-182, https://doi.org/10.1016/j.tust.2016.01.009.
  22. Seol, H., Won, D., Jang, J., Kim, K. Y. and Yun, T. S. (2022). "Ground Collapse in EPB shield TBM site: A case study of railway tunnels in the deltaic region near Nak-Dong River in Korea." Tunnelling and Underground Space Technology, Elsevier, Vol. 120, 104274, https://doi.org/10.1016/j.tust.2021.104274.
  23. Sousa, R. L. and Einstein, H. H. (2021). "Lessons from accidents during tunnel construction." Tunnelling and Underground Space Technology, Elsevier, Vol. 113, 103916, https://doi.org/10.1016/j.tust.2021.103916.
  24. Sturk, R., Olsson, L. and Johansson, J. (1996). "Risk and decision analysis for large underground projects, as applied to the Stockholm ring road tunnels." Tunnelling and Underground Space Technology, Elsevier, Vol. 11, No. 2, pp. 157-164, https://doi.org/10.1016/0886-7798(96)00019-3.
  25. Tommasi, M., Ferrara, G. and Saggino, A. (2018). "Application of Bayes' theorem in valuating depression tests performance." Frontiers in Psychology, Frontiers, Vol. 9, 1240, https://doi.org/10.3389/fpsyg.2018.01240.
  26. Yu, G. H. (2008)."A study on engineering characteristics of weak rock ground happened TBM Jaming accident in Tunnelling." Journal of the Korea Construction Safety Engineering Association, KCSA, Vol. 45, pp. 60-70.
  27. Zhu, H., Yan, J. and Liang, W. (2019). "Challenges and development prospects of ultra-long and ultra-deep mountain tunnels." Engineering, Elsevier, Vol. 5, No. 3, pp. 384-392, https://doi.org/10.1016/j.eng.2019.04.009.
  28. Zolfaghari, M., Mokhtari, E. and Morsali, M. (2011). "Geological evidences of collapse zones in TBM tunneling; a case study of Ghomroud water conveyance tunnel, IRAN." In Proceedins of First Asian & 9th Iranian Tunneling Symposium, IRTA, Tehran, Iran.