DOI QR코드

DOI QR Code

ON THE RATIONAL COHOMOLOGY OF MAPPING SPACES AND THEIR REALIZATION PROBLEM

  • Abdelhadi Zaim (Department of Mathematics and Computer Sciences Faculty of Sciences Ain Chock University Hassan II)
  • Received : 2023.01.28
  • Accepted : 2023.05.09
  • Published : 2023.10.31

Abstract

Let f : X → Y be a map between simply connected CW-complexes of finite type with X finite. In this paper, we prove that the rational cohomology of mapping spaces map(X, Y ; f) contains a polynomial algebra over a generator of degree N, where N = max{i, πi(Y)⊗ℚ ≠ 0} is an even number. Moreover, we are interested in determining the rational homotopy type of map(𝕊n, ℂPm; f) and we deduce its rational cohomology as a consequence. The paper ends with a brief discussion about the realization problem of mapping spaces.

Keywords

Acknowledgement

The author is very grateful to Professor Gregory Lupton for fruitful discussions and helpful suggestions. The author would also like to thank the referee for his valuable comment and suggestions which helped to improve the manuscript.

References

  1. M. Amann and V. Kapovitch, On fibrations with formal elliptic fibers, Adv. Math. 231 (2012), no. 3-4, 2048-2068. https://doi.org/10.1016/j.aim.2012.07.022 
  2. U. Buijs, Y. Felix, and A. Murillo, L rational homotopy of mapping spaces, Rev. Mat. Complut. 26 (2013), no. 2, 573-588. https://doi.org/10.1007/s13163-012-0105-z 
  3. U. Buijs and A. Murillo, The rational homotopy Lie algebra of function spaces, Comment. Math. Helv. 83 (2008), no. 4, 723-739. https://doi.org/10.4171/CMH/141 
  4. U. Buijs and A. Murillo, Rational Homotopy type of free and pointed mapping spaces between spheres, Proceedings of Ukrainian Mathematical Society. 6 (2013), 130-139. 
  5. O. Cornea, G. Lupton, J. Oprea, and D. Tanre, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, 103, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/surv/103 
  6. A. Dold and R. K. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305. http://projecteuclid.org/euclid.ijm/1255455128  https://doi.org/10.1215/ijm/1255455128
  7. Y. Felix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer, New York, 2001. https://doi.org/10.1007/978-1-4613-0105-9 
  8. A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), no. 2, 609-620. https://doi.org/10.2307/1999931 
  9. M. R. Hilali and A. Zaim, Spaces realized and non-realized as Dold-Lashof classifying spaces, J. Geom. Symmetry Phys. 50 (2018), 29-56. https://doi.org/10.7546/jgsp50-2018-29-56 
  10. P. J. Hilton, G. Mislin, and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies, No. 15, Notas de Matematica, No. 55., North-Holland, Amsterdam, 1975. 
  11. G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map and the rationalized G-sequence, arXiv.math/0309432, 2003. 
  12. G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map. I. Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra 209 (2007), no. 1, 159-171. https://doi.org/10.1016/j.jpaa.2006.05.018 
  13. G. Lupton and S. B. Smith, Criteria for components of a function space to be homotopy equivalent, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 95-106. https://doi.org/10.1017/S0305004108001175 
  14. G. Lupton and S. B. Smith, The universal fibration with fibre X in rational homotopy theory, J. Homotopy Relat. Struct. 15 (2020), no. 2, 351-368. https://doi.org/10.1007/s40062-020-00258-0 
  15. J. M. Moller and M. Raussen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc. 292 (1985), no. 2, 721-732. https://doi.org/10.2307/2000242 
  16. S. B. Smith, The homotopy theory of function spaces: a survey, arXiv.1009.0804.  https://doi.org/10.1090/conm/519/10228
  17. J. D. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246. https://doi.org/10.1016/0040-9383(63)90006-5 
  18. D. P. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math. No. 47 (1977), 269-331.