DOI QR코드

DOI QR Code

인공위성 Sentinel-2 자료를 이용한 경기만 수중 탁도 산출

Retrieval of Underwater Turbidity in Gyeonggi Bay Using Sentinel-2 Satellite Data

  • 김수란 (서울대학교 과학교육과) ;
  • 김태성 (선박해양플랜트연구소 해양공공디지털연구본부) ;
  • 박경애 (서울대학교 지구과학교육과) ;
  • 박재진 (선박해양플랜트연구소 해양공공디지털연구본부) ;
  • 이문진 (선박해양플랜트연구소 해양공공디지털연구본부)
  • Su-Ran Kim (Department of Science Education, Seoul National University) ;
  • Tae-Sung Kim (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Kyung-Ae Park (Department of Earth Science Education, Seoul National University) ;
  • Jae-Jin Park (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Moon-Jin Lee (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering)
  • 투고 : 2023.10.12
  • 심사 : 2023.10.30
  • 발행 : 2023.10.31

초록

해수의 탁도는 수중의 부유 물질이나 생물에 의해 혼탁해지는 정도를 정량적으로 나타낸 변수로 연안 환경을 이해하는 데 중요한 해양 변수이다. 한반도의 서해안은 얕은 수심, 조류, 하천 유래 부유 퇴적물의 영향으로 광학적으로 강한 시공간 변동성을 가지고 있어서 인공위성 자료를 활용한 탁도 산출은 해양학적으로 다양한 활용 가능성을 가진다. 본 연구에서는 경기만을 연구 해역으로 설정하고, 해수의 탁도 산출 알고리즘 개발을 위하여 2018년부터 2023년 7월까지 해양환경공단의 해양수질자동측정망 기반 현장 관측 탁도 자료와 Sentinel-2 인공위성의 MSI (Multi-Spectral Instrument) Level-2 자료를 사용하여 위성-현장 관측치 사이의 일치점 데이터베이스를 생산하였다. 이전의 다양한 탁도 산출식을 조사하여 정확도를 상호 비교하였고 경기만 해역에서 최적 파장대를 조사하고 분석하였다. 그 결과 녹색 밴드(560 nm)를 기반으로 한 탁도 산출식이 0.08 NTU의 상대적으로 작은 평균 제곱근 오차를 보였다. 인공위성 광학 자료를 기반으로 산출된 탁도는 해수의 광학적 특성과 연안 환경의 변동성을 이해하고 다양한 해상 활동에 도움을 줄 수 있을 것으로 기대된다.

Seawater turbidity is one of oceanic variables that reflects the degree of optical property caused by suspended particles or organisms in the water, and it is one of critical oceanic variables for understanding coastal environments. The western coast of the Korean Peninsula, characterized by shallow depths, tidal currents, and the influence of river-borne sediments, exhibits strong spatio-temporal variability in optical properties of sea water. Therefore, the utilization of satellite data for turbidity estimation holds diverse potential applications from an oceanographic perspective. In this study, Gyeonggi Bay was selected as a research area and a turbidity calculation algorithm was developed. To achieve this, we utilized a combination of in-situ turbidity data from the Korea marine environment management corporation's automated monitoring network as ground truth data and Sentinel-2 satellite data from the Level-2 Multi-Spectral Instrument (MSI) from 2018 to July 2023. A matchup database between satellite data and in-situ measurement data was produced. Various turbidity retrieval methods of previous studies were investigated and their accuracy compared. As a result, a turbidity retrieval formulation based on the green band (560 nm) exhibited a relatively low root mean square error of 0.08 NTU in the Gyeonggi Bay. Turbidity calculated based on satellite optical data is expected to enhance our understanding of seawater's optical characteristics, coastal environmental variability, and provide valuable assistance in various maritime activities.

키워드

과제정보

본 연구는 해양수산부 재원으로 선박해양플랜트연구소의 주요 사업인 '빅데이터 기반 해양사고 수중수색구조 지원정보 산출 기술 개발'에 의해 수행되었습니다(1525014881). 탁도 실측 자료는 해양환경공단에서 제공되었습니다.

참고문헌

  1. Arena, M., Pratolongo, P., Delgado, A. L., Celleri, C., and Vitale, A., 2022, Spatial and temporal distribution of satellite turbidity in response to different environmental variables in the Bahia Blanca Estuary, South-Western Atlantic. International Journal of Remote Sensing, 43(10), 3714-3743. https://doi.org/10.1080/01431161.2022.2105175
  2. Bukata, R. P., Jerome, J. H., Kondratyev, A. S., and Pozdnyakov, D. V., 2018, Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton, USA, 384 p.
  3. Choi, J. Y., 1993, Seasonal variations of suspended matters in the Keum estuary and its adjacent coastal area, The Journal of the Oceanological Society of Korea, 28(4), 272-280.
  4. Choi, J. Y. and Park, Y. A., 1998, Southward transport of suspended sediments during summer season in the coastal zone off Tae-An Peninsula, West Coast of Korea. Journal of the Korean Society of Oceanography, 3(1), 45-52.
  5. Crioni, P. L., Teramoto, E. H., and Chang, H. K., 2023, Monitoring river turbidity after a mine tailing dam failure using an empirical model derived from Sentinel-2 imagery. Anais da Academia Brasileira de Ciencias 95, e20220177.
  6. Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., and Knaeps. E., 2015, A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sensing of Environment 156, 157-168. https://doi.org/10.1016/j.rse.2014.09.020
  7. Doxaran, D., Froidefond, J. M., Lavender, S. J., and Castaing, P., 2002, Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Environment 81, 149-161. https://doi.org/10.1016/S0034-4257(01)00341-8
  8. Doxaran, D., Castaing, P., and Lavender, S. J., 2006, Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data. International Journal of Remote Sensing, 27(11), 2303-2321. https://doi.org/10.1080/01431160500396865
  9. Dyer, K. R., Christie, M. C., and Manning, A. J., 2004, The effects of suspended sediment on turbulence within an estuarine turbidity maximum. Estuarine, Coastal and Shelf Science 59(2), 237-248. https://doi.org/10.1016/j.ecss.2003.09.002
  10. Environmental Protection Agency, 1988, Turbidity, Water Quality Standards Criteria Summaries: A Compilation of State/Federal Criteria. 6-7.
  11. Gippel, C. J., 1995, Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrological Processes 9(1), 83-97. https://doi.org/10.1002/hyp.3360090108
  12. Gordon, H. and Morel, A., 1983, Lecture notes on coastal and estuarine studies. In remote assessment of ocean color for interpretation of satellite visible imagery: A review Vol. 4. Springer-Verlag, NY, USA, 114 p
  13. Hussein, N. M., Assaf, M. N., and Abohussein, S. S., 2023, Sentinel 2 analysis of turbidity retrieval models in inland water bodies: The case study of Jordanian dams. The Canadian Journal of Chemical Engineering 101(3), 1171-1184. https://doi.org/10.1002/cjce.24526
  14. International Ocean Colour Coordinating Group, 2000, Remote sensing of ocean colour in coastal, and other optically-complex, waters, Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group No. 3. Dartmouth, NS, Canada, 140 p.
  15. Jafar-Sidik, M., Gohin, F., Bowers, D., Howarth, J., and Hull, T., 2017, The relationship between suspended particulate matter and turbidity at a Mooring Station in a coastal environment: Consequences for satellite-derived products. Oceanologia 59(3), 365-378. https://doi.org/10.1016/j.oceano.2017.04.003
  16. Jang, J. C., Yoon, Y. W., and Park, K. A., 2017, Development of R&E educational program using satellite image for science-gifted student: Focused on land use classification around Siheung-si. The Korean Society for School Science 11(1), 98-112
  17. Katlane, R., Dupouy, C., Kilani, B., and Berges, J., 2020, Estimation of chlorophyll and turbidity using Sentinel 2A and EO1 data in Kneiss Archipelago Gulf of Gabes, Tunisia. International Journal of Geosciences 11, 708-728. https://doi.org/10.4236/ijg.2020.1110035
  18. Kim, D. H., Ryu, D. W., Choi, Y. M., and Lee, W. J., 2010, Application of kriging and inverse distance weighting method for the estimation of geo-layer of Songdo area in Incheon. Journal of the Korean Geotechnical Society 26(1), 5-19.
  19. Kirk, J. T., 1994, Light and photosynthesis in aquatic ecosystems. Canberra: Cambridge University Press.
  20. Lee, M. S., Park, K. A., Chung, J. Y., Ahn, Y. H., and Moon, J. E., 2011, Estimation of coastal suspended sediment concentration using satellite data and oceanic in-situ measurements. Korean Journal of Remote Sensing 27(6), 677-692. https://doi.org/10.7780/kjrs.2011.27.6.677
  21. Lee, S. D., 2002, Gyeonggi-do west coast area strategic development plan establishment study. Gyeonggi Development Institute.
  22. Maimouni, S., Moufkari, A. A., Daghor, L., Fekri, A., Oubraim, S., and Lhissou, R., 2022, Spatiotemporal monitoring of low water turbidity in Moroccan coastal lagoon using Sentinel-2 data. Remote Sensing Applications: Society and Environment 26, 100772.
  23. Martins, V. S., Claudio, C. F. B., Lino, A. S. C., Daniel, S. F. J., Felipe, L. L., and Evlyn, M. L. M. N., 2017, Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes. International Journal of Remote Sensing 9(4), 322.
  24. Min, J. E., Ryu, J. H., and Park, Y. J., 2015, An analysis of the relationship between Inherent optical properties and ocean color algorithms around the Korean waters. Korean Journal of Remote Sensing 31, 473-490. https://doi.org/10.7780/KJRS.2015.31.5.11
  25. Moore, G. F., Aiken, J., and Lavender, S. J., 1999, The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS. International Journal of Remote Sensing 20, 1713-1733. https://doi.org/10.1080/014311699212434
  26. Moore, T. S., Campbell, J. W., and Dowell, M. D., 2009, A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sensing of Environment 113(11), 2424-2430. https://doi.org/10.1016/j.rse.2009.07.016
  27. Morel, A. and Prieur, L., 1977, Analysis of variations in ocean color 1. Limnology and Oceanography 22(4), 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
  28. Oh, J. K., 1995, Sedimentation processes of the suspended sediments in Yumha channel of the Han River estuary, Korea, 16(1), 20-29.
  29. Park, J. E., Park, K. A., and Lee, J. H., 2021, Overview and prospective of satellite chlorophyll-a concentration retrieval algorithms suitable for coastal turbid sea waters. Journal of the Korean Earth Science Society 42(3), 247-263. https://doi.org/10.5467/JKESS.2021.42.3.247
  30. Park, Y. A., Kim, S. C., and Choi, J. H., 1984a, Distribution and transportation of fine-grained sediments on the inner-continental shelf off the Kuem River Estuary, Korea. Journal of the Geological Society of Korea, 20(2), 154-168.
  31. Park, Y. A., Lee, C. B., and Choi, J. H., 1984b, Sedimentary environments of the Gwangyang Bay, southern coast of Korea. The Journal of the Oceanological Society of Korea 19(1), 82-88.
  32. Pisanti, A., Magri, S., Ferrando, I., and Federici, B., 2002, Sea water turbidity analysis from Sentinel-2 Images: Atmospheric correction and bands correlation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 48(4), 371-78. https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-371-2022
  33. Wilber, D. H. and Clarke, D. G., 2001, Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. North American Journal of Fisheries Management 21(4), 855-875. https://doi.org/10.1577/1548-8675(2001)021<0855:BEOSSA>2.0.CO;2