DOI QR코드

DOI QR Code

한반도 주변해역에서의 NOAA-20/VIIRS 해수면온도 검증과 오차 특성

Validation of NOAA-20/VIIRS Sea Surface Temperature and Error Characteristics in the Seas around Korean Peninsula

  • 김희영 (서울대학교 지구과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/교육종합연구원) ;
  • 주희태 (국립수산과학원) ;
  • 이준수 (국립수산과학원) ;
  • 양준용 (국립수산과학원)
  • Hee-Young Kim (Department of Earth Science Education, Seoul National University) ;
  • Kyung-Ae Park (Department of Earth Science Education/Center for Educational Research, Seoul National University) ;
  • Hui-Tae Joo (National Institute of Fisheries Science) ;
  • Joon-Soo Lee (National Institute of Fisheries Science) ;
  • Jun-Yong Yang (National Institute of Fisheries Science)
  • 투고 : 2023.10.12
  • 심사 : 2023.10.27
  • 발행 : 2023.10.31

초록

본 연구에서는 미국 해양 대기청(NOAA)의 NOAA-20 위성에 장착된 차세대 고해상도 복사계인 VIIRS로부터 산출된 적외 해수면온도의 자료를 수집하고, 실측 자료와의 일치점을 생산하여 한반도 주변 해역에서의 정확도를 검증하였다. 2020년 5월부터 2023년 6월까지 최근 3년간의 자료를 사용하였고, 총 75,700개의 일치점을 생산하였다. NOAA-20/VIIRS 해수면온도는 표층 뜰개 부이 관측 해수면온도와 비교해보았을 때 약 0.52 K의 평균 제곱근 오차와 - 0.12 K의 평균 편차를 보였고, 이는 전구 해역을 대상으로 한 기존의 정확도 검증 연구 결과값을 상회하는 수치였다. NOAA-20 해수면온도의 오차 특성 분석 결과 겨울과 봄에는 음의 편차가, 여름철에는 양의 편차를 보이는 계절적 특성이 나타났으며, 15-16시에 최대 평균 제곱근오차, 최대 양의 편차 및 22-24시에 최소 평균제곱근오차, 최소 편차를 가지는 일간 변화를 보였다. 이외에도 NOAA-20 해수면온도의 오차는 풍속, 위성 천정각, 연안으로부터의 거리, 해수면 온도의 공간 구배 크기에 영향을 받아 변동하는 특성이 나타났다. 전반적으로 위성 해수면온도의 편차값은 14 m s-1 이상의 풍속 범위에서 풍속이 커질수록 양의 방향으로 증가하는 경향을 보였으며, 5 m s-1 이하의 낮은 풍속 범위에서는 풍속이 약해질수록 낮/밤 자료에 따라 각각 양의 방향, 음의 방향으로 편차가 증가하였다. 위성 천정각이 커질수록 해수면온도의 오차 범위는 급격하게 증가하였으며, 연안에 근접할수록 (<300 km) 위성 해수면온도의 오차가 증가하는 것을 확인할 수 있었다. 해수면온도의 공간 구배는 그 크기가 커질수록 위성 해수면온도의 평균 제곱근 오차를 증폭시키는 경향이 나타났다. 국지적인 해역에서의 위성 해수면온도 정확도 및 오차 특성은 전구 해역에서의 전반적인 특성과는 다르게 나타날 수 있다는 점을 고려할 때 본 연구는 향후 한반도 주변해에서 VIIRS 해수면온도를 활용하기 위한 선행연구로 해수면온도 오차의 변동 특성 및 분포에 대한 깊은 이해가 필요함을 시사한다.

In this study, data of infrared Sea Surface Temperature (SST) obtained from the next-generation high-resolution radiometer VIIRS on the NOAA-20 satellite were collected and collocated with in-situ measurements to verify accuracy in the seas around the Korean Peninsula. Data spanning from May 2020 to June 2023 were utilized, resulting in the generation of 75,700 match-up points. The NOAA-20/VIIRS SST showed a mean Root-Mean-Square-Error (RMSE) of approximately 0.52 K and a mean bias of -0.12 K when compared to SST observations from surface buoys. These values exceeded the accuracy of VIIRS SST reported in previous studies conducted in global oceans. Analysis of NOAA-20 SST error characteristics revealed seasonal variations, with negative biases observed in winter and spring, while positive biases were prominent during the summer. Additionally, diurnal variations were observed, with maximum RMSE and maximum positive biases occurring around 15-16 hours, and minimum RMSE and minimum biases around 22-24 hours. Furthermore, the errors in NOAA-20 SST were influenced by factors such as wind speed, satellite zenith angle, distance from the coast, and the gradient magnitude of SST. Generally, the mean bias of SST tended to increase positively with wind speeds above 14 m s-1 and increase positively or negatively with decreasing wind speeds below 5 m s-1, depending on daytime or nighttime. Additionally, a larger satellite zenith angle led to a significant expansion of the SST error range. The proximity to the coastline (within 300 km) was associated with increased SST errors. Larger spatial gradients of SST amplified the average RMSE of satellite SST. Considering the distinct characteristics of SST accuracy and error patterns in regional seas, especially in the seas around the Korean Peninsula, this study emphasizes the need for a deeper understanding of the variations and distribution of SST errors. This preliminary research serves as a foundation for the future utilization of VIIRS SST in the seas around the Korean Peninsula.

키워드

과제정보

이 연구는 국립수산과학원 한반도 주변해역 해양변동 특성연구(R2023013) 지원을 받아 수행되었습니다. 일부 해양관측 자료 분석은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. RS-2023-00208935).

참고문헌

  1. Beardsley, R. C., Dorman, C. E., Friehe, C. A., Rosenfeld, L. K., and Winant, C. D, 1987, Local atmospheric forcing during the Coastal Ocean Dynamics Experiment: 1. A description of the marine boundary layer and atmospheric conditions over a northern California upwelling region. Journal of Geophysical Research: Oceans, 92(C2), 1467-1488. https://doi.org/10.1029/JC092iC02p01467
  2. Bentamy, A., Piolle, J. F., Grouazel, A., Danielson, R., Gulev, S., Paul, F., and Josey, S. A, 2017, Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sensing of Environment, 201, 196-218. https://doi.org/10.1016/j.rse.2017.08.016
  3. Cao, C., Xiong, J., Blonski, S., Liu, Q., Uprety, S., Shao, X., ... and Weng, F, 2013, Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. Journal of Geophysical Research: Atmospheres, 118(20), 11-664. https://doi.org/10.1002/2013JD020418
  4. Cayula, J. F. P., May, D. A., McKenzie, B. D., and Willis, K. D, 2013, VIIRS-derived SST at the Naval Oceanographic Office: From evaluation to operation. In Ocean Sensing and Monitoring V (Vol. 8724, pp. 274-281). SPIE.
  5. Cracknell, A. P, 1997, Advanced very high resolution radiometer AVHRR. Crc Press.
  6. Dong, S., Gille, S. T., Sprintall, J., and Gentemann, C, 2006, Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. Journal of Geophysical Research: Oceans, 111(C4).
  7. Donlon, C. J., T. J. Nightingale, T. Sheasby, J. Turner, I. S. Robinson and W. J. Emergy, 1999, Implications of the oceanic thermal skin temperature deviation at high wind speed, Geophysical Research Letters, 26(16): 2505-2508. https://doi.org/10.1029/1999GL900547
  8. Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, M. J, 2002, Toward improved validation of satellite sea surface skin temperature measurements for climate research. Journal of climate, 15(4), 353-369. https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2
  9. Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., and Abraham, J. P, 2021, An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science, 8, 642372.
  10. Gladkova, I., Ignatov, A., Shahriar, F., Kihai, Y., Hillger, D., and Petrenko, B, 2016, Improved viirs and modis sst imagery. Remote Sensing, 8(1), 79.
  11. Jonasson, O., Ignatov, A., Pryamitsyn, V., Petrenko, B., and Kihai, Y, 2022, JPSS VIIRS SST Reanalysis Version 3. Remote Sensing, 14(14), 3476.
  12. Kwon, K., Choi, B. J., Kim, S. D., Lee, S. H., and Park, K. A. 2020, Assessment and improvement of global gridded sea surface temperature datasets in the Yellow Sea using in situ ocean buoy and research vessel observations. Remote Sensing, 12(5), 759.
  13. Lee, E. Y., and Park, K. A., 2020, Validation of satellite sea surface temperatures and long-term trends in Korean coastal regions over past decades (1982-2018). Remote Sensing, 12(22), 3742.
  14. Li, X., Pichel, W., Clemente-Colon, P., Krasnopolsky, V., and Sapper, J, 2001, Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. International Journal of Remote Sensing, 22(7), 1285-1303. https://doi.org/10.1080/01431160151144350
  15. Li, Z., McWilliams, J. C., Ide, K., and Farrara, J. D, 2015, Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme. Ocean Dynamics, 65, 1001-1015. https://doi.org/10.1007/s10236-015-0850-x
  16. McClain, E. P., 1989, Global sea surface temperatures and cloud clearing for aerosol optical depth estimates, International Journal of Remote Sensing, 10(4-5): 763-769. https://doi.org/10.1080/01431168908903917
  17. Meneghesso, C., Seabra, R., Broitman, B. R., Wethey, D. S., Burrows, M. T., Chan, B. K., ... and Lima, F. P., 2020, Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sensing of Environment, 237, 111588.
  18. Minnett, P. J., Alvera-Azcarate, A., Chin, T. M., Corlett, G. K., Gentemann, C. L., Karagali, I., ... and VazquezCuervo, J, 2019, Half a century of satellite remote sensing of sea-surface temperature. Remote Sensing of Environment, 233, 111366.
  19. Moon, H. T., Choi, H. C., Jang. S. T., Kim. S. J., Lee. H. J. and Park. J. J., 2012, Development of marine environmental Response System around Nuclear Power Plant on the East Sea coast. The Society of Naval Architects of Korea, 187-187.
  20. O'Carroll, A. G., Watts, J. G., Horrocks, L. A., Saunders, R. W., and Rayner, N. A, 2006, Validation of the AATSR meteo product sea surface temperature. Journal of Atmospheric and Oceanic Technology, 23(5), 711-726. https://doi.org/10.1175/JTECH1876.1
  21. Park, K. A., J. Y. Chung, K. Kim and B. H. Choi, 1994, A study on comparison of satellite drifter temperature with satellite derived sea surface temperature of NOAA/NESDIS, Journal of the Korean Society of Remote Sensing, 11(2): 83-107.
  22. Park, K. A., J. Y. Chung, K. Kim, B. H. Choi and D. K. Lee, 1999, Sea Surface Temperature Retrievals Optimized to the East Sea (Sea of Japan) using NOAA/AVHRR Data, Marine Technology Society Journal, 33(1): 23-35. https://doi.org/10.4031/MTSJ.33.1.4
  23. Park, K., Lee, E. Y., Chung, S. R., and Sohn, E. H, 2011, Accuracy assessment of sea surface temperature from NOAA/AVHRR data in the seas around Korea and error characteristics. Korean Journal of Remote Sensing, 27(6), 663-675. https://doi.org/10.7780/KJRS.2011.27.6.663
  24. Park, K. A., Lee, E. Y., Li, X., Chung, S. R., Sohn, E. H., and Hong, S, 2015, NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea. International Journal of Digital Earth, 8(10), 784-804. https://doi.org/10.1080/17538947.2014.937363
  25. Peres, L. F., Franca, G. B., Paes, R. C., Sousa, R. C., and Oliveira, A. N., 2017, Analyses of the positive bias of remotely sensed SST retrievals in the coastal waters of Rio de Janeiro. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6344-6353. https://doi.org/10.1109/TGRS.2017.2726344
  26. Petrenko, B., Ignatov, A., Kihai, Y., Stroup, J., and Dash, P., 2014, Evaluation and selection of SST regression algorithms for JPSS VIIRS. Journal of Geophysical Research: Atmospheres, 119(8), 4580-4599. https://doi.org/10.1002/2013JD020637
  27. Reverdin, G., Morisset, S., Bellenger, H., Boutin, J., Martin, N., Blouch, P., and Ward, B., 2013, Near-sea surface temperature stratification from SVP drifters. Journal of Atmospheric and Oceanic Technology, 30(8), 1867-1883. https://doi.org/10.1175/JTECH-D-12-00182.1
  28. Saunders, P. M, 1967, The temperature at the ocean-air interface. Journal of Atmospheric Sciences, 24(3), 269-273. https://doi.org/10.1175/1520-0469(1967)024<0269:TTATOA>2.0.CO;2
  29. Send, U., Beardsley, R. C., and Winant, C. D, 1987, Relaxation from upwelling in the coastal ocean dynamics experiment. Journal of Geophysical Research: Oceans, 92(C2), 1683-1698. https://doi.org/10.1029/JC092iC02p01683
  30. Strong, A. E., and McClain, E. P, 1984, Improved ocean surface temperatures from space-Comparisons with drifting buoys. Bulletin of the American Meteorological Society, 65(2), 138-142. https://doi.org/10.1175/1520-0477(1984)065<0138:IOSTFS>2.0.CO;2
  31. Tandeo, P., Autret, E., Chapron, B., Fablet, R., and Garello, R, 2014, SST spatial anisotropic covariances from METOP-AVHRR data. Remote Sensing of Environment, 141, 144-148. https://doi.org/10.1016/j.rse.2013.10.024
  32. Tu, Q., Pan, D., and Hao, Z, 2015, Validation of S-NPP VIIRS sea surface temperature retrieved from NAVO. Remote Sensing, 7(12), 17234-17245. https://doi.org/10.3390/rs71215881
  33. Von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers, D., Champollion, N., and Wild, M, 2016, An imperative to monitor Earth's energy imbalance. Nature Climate Change, 6(2), 138-144. https://doi.org/10.1038/nclimate2876
  34. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R, 2009, Advances in quantifying air-sea gas exchange and environmental forcing. Annual review of marine science, 1, 213-244. https://doi.org/10.1146/annurev.marine.010908.163742
  35. Woo, H. J., and Park, K. A. 2020, Inter-comparisons of daily sea surface temperatures and in-situ temperatures in the coastal regions. Remote Sensing, 12(10), 1592.
  36. Woodcock, A. H, 1941, Surface cooling and streaming in shallow fresh and salt waters.
  37. Zhou, L., Divakarla, M., Liu, X., Layns, A., and Goldberg, M, 2019, An overview of the science performances and calibration/validation of joint polar satellite system operational products. Remote Sensing, 11(6), 698.