DOI QR코드

DOI QR Code

염소 바이패스 분진 및 수세 잔류물의 특성분석

Characteristics Analysis of Chlorine Bypass Dust and Water- washed Residue

  • 이선목 ((주)정우소재) ;
  • 이대근 ((주)정우소재) ;
  • 길준호 (쌍용C&E 기술연구소) ;
  • 이태우 (쌍용C&E 기술연구소) ;
  • 송훈 (한국세라믹기술원 탄소중립소재센터) ;
  • 염우성 (한국세라믹기술원 탄소중립소재센터)
  • Sun-Mok Lee (Jungwoo Materials. Co., Ltd.) ;
  • Daekeun Lee (Jungwoo Materials. Co., Ltd.) ;
  • Jun-Ho Kil (Ssangyong C&E Technology Research Center) ;
  • Taewoo Lee (Ssangyong C&E Technology Research Center) ;
  • Hun Song (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Woo Sung Yum (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 투고 : 2023.09.26
  • 심사 : 2023.10.13
  • 발행 : 2023.10.31

초록

염소 바이패스 분진의 주성분은 칼슘, 알칼리 및 염소 성분이며, 시멘트 원료로 재활용하기 위하여 염소 성분 제거가 필요하다. 시멘트 업체에서는 염소 바이패스 분진의 시멘트 원료 사용과 KCl 회수를 위해서 수세 처리를 진행하고 있다. 본 연구에서는 염소 바이패스 분진 및 수세 잔류물의 재활용 가능성을 파악하기 위해서 35,000톤/년 규모 염소 바이패스 분진 수세 설비에서 사용한 염소 바이패스 분진과 수세 잔류물의 화학성분, 광물 특성 및 미세구조를 분석하였다. 염소 바이패스 분진의 염소 함량은 23.9%에서 수세 처리 후에 1.4%로 감소하여 수세 잔류물의 시멘트 원료 사용 가능성을 확인하였다. 수세 잔류물에서의 염소 성분은 대부분 Calcium Aluminium Oxide Chloride Hydrate 광물 형태로 존재하고 있음을 확인하였다. CaO 성분은 22.4%에서 49.8%로 증가하였으며, K2O 성분은 25.2%에서 5.45% 감소하였다. 수세 잔류물의 평균입경은 22.72㎛로 수세 전의 염소 바이패스 분진의 평균입경 12.13㎛와 비교하여 크게 증가한 것을 알 수 있는 데, 이것은 염소 바이패스 분진에 포함되어있는 1㎛ 이하의 염소화합물 입자가 수세 과정에서 용해되었기 때문인 것으로 판단되었다.

The main components of chlorine bypass dust are calcium, alkali, and chlorine. Chlorine components must be removed from chlorine bypass dust to enable its recycling as a cement raw material. Cement companies usually employ water-washing treatment to recover KCl from chlorine bypass dust. In this study, the chemical composition, mineral properties, and microstructure of the chlorine bypass dust and washed residues obtained from a 35,000 ton/year chlorine-bypass-dust-washing facility were analyzed to determine the feasibility of recycling the dust and its washed residues. The chlorine content of the dust decreased from 23.9% to 1.4% after washing, thus confirming the possibility of using the washed residues as a cement raw material. The CaO component increased from 22.4% to 49.8% whereas the K2O component decreased from 25.2% to 5.45%. The average particle diameter of the water-washed residues was 22.72 ㎛, which was significantly higher than that of the chlorine bypass dust before washing (12.13 ㎛). This result was attributed to the dissolution of chlorine compound particles measuring less than 1 ㎛ in the chlorine bypass dust during washing.

키워드

과제정보

본 연구는 기획재정부 재원으로 탄소혁신스타즈프로젝트사업(1415184331) 및 산업통산자원부 탄소중립산업핵심기술개발사업(RS-2023-00265662)의 연구비지원을 받아 수행되었습니다.

참고문헌

  1. Korea Cement Association, Recycling of Circular Resources in Cement Industry, http://recycling.cement.or.kr/contents/sub3_01.asp?sm=3_1_0, May 8, 2023. 
  2. Karolina Wojtacha-Rychter, Magdalena Krol, Malgorzata Golaszewska, et al., 2022 : Dust from chlorine bypass installation as cementitious materials replacement in concrete making, J. Build. Eng., 51, pp.1-20.  https://doi.org/10.1016/j.jobe.2022.104309
  3. Katarzyna Borek, Przemyslaw Czapik, Ryszard Dachowski, 2023 : Cement Bypass Dust as an Ecological Binder Substitute in Autoclaved Silica-Lime Products, Mater, 16(316), pp.1-13. 
  4. Youngmin Yun, Nari Yeom, Kab soo Lee, et al., 2017 : Preparation of KCl through Removal of Heavy Metals from Chlorine By-Pass Dust, Journal of Korean Institute of Resources and Recycling, 26(2), pp.11-17.  https://doi.org/10.7844/kirr.2017.26.2.11
  5. Mahrous A. M. Ali, Hyung-Sik Yang, 2011 : Utilization of Cement Kiln Dust in Industry Cement Bricks, Geosystem Eng., 14(1), pp.29-34.  https://doi.org/10.1080/12269328.2011.10541327
  6. Alicja Uliasz-Bochenczyk, 2019 : Chemical characteristics of dust from cement kilns, mineral resources management, 35(2), pp.87-102. 
  7. Min-Cheol Han, Dong-Joo Lee, 2019 : Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing, Journal Recycled Construction Resources, pp.310-315. 
  8. Lee, Churl-Kyoung, 2007 : Basic study and patent analysis of electrochemical denitrification from industrial wastewater, Journal of Korean Institute of Resources and Recycling, 16(6), pp.52-60. 
  9. Christof Lanzerstorfer, 2019 : Potential of industrial dedusting residues as a source of potassium for fertilizer production-A mini review, Resource Conservation and Recycling, 143, pp.68-76.  https://doi.org/10.1016/j.resconrec.2018.12.013
  10. Taiheiyo Chlorine Bypass System, https://www.taiheiyoeng.co.jp/en/engineering/taiheiyo-chlorine-bypass-system.html, May 27, 2023. 
  11. Christof Lanzerstorfer, 2016 : Residue from the chloride bypass de-dusting of cement kilns: Reduction of the chloride content by air classification for improved utilization, Process Safety and Environmental Protection, 104, pp.444-450.  https://doi.org/10.1016/j.psep.2016.06.010
  12. Cortada Mut, M. D. M., Norskov, L. K., Jappe Frandsen, et al., 2015 : Review : Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants, Energy and Fuels, 29(7), pp.4076-4099.  https://doi.org/10.1021/ef502633u
  13. Taehwan Kim, Jan Olek, 2012 : Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars, Transportaion Research Record: Journal of the Transportation Research Board, 2290, pp.10-18.  https://doi.org/10.3141/2290-02
  14. Agata Mlonka-Medralaa, Aneta Magdziarza, Katarzyna Nowinskab et al., 2020 : Alkali metals association in biomass and their impact on ash melting behaviour, Journal of Fuels. 261, pp.1-17. https://doi.org/10.1016/j.fuel.2019.116421