DOI QR코드

DOI QR Code

Characteristics Analysis of Chlorine Bypass Dust and Water- washed Residue

염소 바이패스 분진 및 수세 잔류물의 특성분석

  • Sun-Mok Lee (Jungwoo Materials. Co., Ltd.) ;
  • Daekeun Lee (Jungwoo Materials. Co., Ltd.) ;
  • Jun-Ho Kil (Ssangyong C&E Technology Research Center) ;
  • Taewoo Lee (Ssangyong C&E Technology Research Center) ;
  • Hun Song (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Woo Sung Yum (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 이선목 ((주)정우소재) ;
  • 이대근 ((주)정우소재) ;
  • 길준호 (쌍용C&E 기술연구소) ;
  • 이태우 (쌍용C&E 기술연구소) ;
  • 송훈 (한국세라믹기술원 탄소중립소재센터) ;
  • 염우성 (한국세라믹기술원 탄소중립소재센터)
  • Received : 2023.09.26
  • Accepted : 2023.10.13
  • Published : 2023.10.31

Abstract

The main components of chlorine bypass dust are calcium, alkali, and chlorine. Chlorine components must be removed from chlorine bypass dust to enable its recycling as a cement raw material. Cement companies usually employ water-washing treatment to recover KCl from chlorine bypass dust. In this study, the chemical composition, mineral properties, and microstructure of the chlorine bypass dust and washed residues obtained from a 35,000 ton/year chlorine-bypass-dust-washing facility were analyzed to determine the feasibility of recycling the dust and its washed residues. The chlorine content of the dust decreased from 23.9% to 1.4% after washing, thus confirming the possibility of using the washed residues as a cement raw material. The CaO component increased from 22.4% to 49.8% whereas the K2O component decreased from 25.2% to 5.45%. The average particle diameter of the water-washed residues was 22.72 ㎛, which was significantly higher than that of the chlorine bypass dust before washing (12.13 ㎛). This result was attributed to the dissolution of chlorine compound particles measuring less than 1 ㎛ in the chlorine bypass dust during washing.

염소 바이패스 분진의 주성분은 칼슘, 알칼리 및 염소 성분이며, 시멘트 원료로 재활용하기 위하여 염소 성분 제거가 필요하다. 시멘트 업체에서는 염소 바이패스 분진의 시멘트 원료 사용과 KCl 회수를 위해서 수세 처리를 진행하고 있다. 본 연구에서는 염소 바이패스 분진 및 수세 잔류물의 재활용 가능성을 파악하기 위해서 35,000톤/년 규모 염소 바이패스 분진 수세 설비에서 사용한 염소 바이패스 분진과 수세 잔류물의 화학성분, 광물 특성 및 미세구조를 분석하였다. 염소 바이패스 분진의 염소 함량은 23.9%에서 수세 처리 후에 1.4%로 감소하여 수세 잔류물의 시멘트 원료 사용 가능성을 확인하였다. 수세 잔류물에서의 염소 성분은 대부분 Calcium Aluminium Oxide Chloride Hydrate 광물 형태로 존재하고 있음을 확인하였다. CaO 성분은 22.4%에서 49.8%로 증가하였으며, K2O 성분은 25.2%에서 5.45% 감소하였다. 수세 잔류물의 평균입경은 22.72㎛로 수세 전의 염소 바이패스 분진의 평균입경 12.13㎛와 비교하여 크게 증가한 것을 알 수 있는 데, 이것은 염소 바이패스 분진에 포함되어있는 1㎛ 이하의 염소화합물 입자가 수세 과정에서 용해되었기 때문인 것으로 판단되었다.

Keywords

Acknowledgement

본 연구는 기획재정부 재원으로 탄소혁신스타즈프로젝트사업(1415184331) 및 산업통산자원부 탄소중립산업핵심기술개발사업(RS-2023-00265662)의 연구비지원을 받아 수행되었습니다.

References

  1. Korea Cement Association, Recycling of Circular Resources in Cement Industry, http://recycling.cement.or.kr/contents/sub3_01.asp?sm=3_1_0, May 8, 2023. 
  2. Karolina Wojtacha-Rychter, Magdalena Krol, Malgorzata Golaszewska, et al., 2022 : Dust from chlorine bypass installation as cementitious materials replacement in concrete making, J. Build. Eng., 51, pp.1-20.  https://doi.org/10.1016/j.jobe.2022.104309
  3. Katarzyna Borek, Przemyslaw Czapik, Ryszard Dachowski, 2023 : Cement Bypass Dust as an Ecological Binder Substitute in Autoclaved Silica-Lime Products, Mater, 16(316), pp.1-13. 
  4. Youngmin Yun, Nari Yeom, Kab soo Lee, et al., 2017 : Preparation of KCl through Removal of Heavy Metals from Chlorine By-Pass Dust, Journal of Korean Institute of Resources and Recycling, 26(2), pp.11-17.  https://doi.org/10.7844/kirr.2017.26.2.11
  5. Mahrous A. M. Ali, Hyung-Sik Yang, 2011 : Utilization of Cement Kiln Dust in Industry Cement Bricks, Geosystem Eng., 14(1), pp.29-34.  https://doi.org/10.1080/12269328.2011.10541327
  6. Alicja Uliasz-Bochenczyk, 2019 : Chemical characteristics of dust from cement kilns, mineral resources management, 35(2), pp.87-102. 
  7. Min-Cheol Han, Dong-Joo Lee, 2019 : Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing, Journal Recycled Construction Resources, pp.310-315. 
  8. Lee, Churl-Kyoung, 2007 : Basic study and patent analysis of electrochemical denitrification from industrial wastewater, Journal of Korean Institute of Resources and Recycling, 16(6), pp.52-60. 
  9. Christof Lanzerstorfer, 2019 : Potential of industrial dedusting residues as a source of potassium for fertilizer production-A mini review, Resource Conservation and Recycling, 143, pp.68-76.  https://doi.org/10.1016/j.resconrec.2018.12.013
  10. Taiheiyo Chlorine Bypass System, https://www.taiheiyoeng.co.jp/en/engineering/taiheiyo-chlorine-bypass-system.html, May 27, 2023. 
  11. Christof Lanzerstorfer, 2016 : Residue from the chloride bypass de-dusting of cement kilns: Reduction of the chloride content by air classification for improved utilization, Process Safety and Environmental Protection, 104, pp.444-450.  https://doi.org/10.1016/j.psep.2016.06.010
  12. Cortada Mut, M. D. M., Norskov, L. K., Jappe Frandsen, et al., 2015 : Review : Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants, Energy and Fuels, 29(7), pp.4076-4099.  https://doi.org/10.1021/ef502633u
  13. Taehwan Kim, Jan Olek, 2012 : Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars, Transportaion Research Record: Journal of the Transportation Research Board, 2290, pp.10-18.  https://doi.org/10.3141/2290-02
  14. Agata Mlonka-Medralaa, Aneta Magdziarza, Katarzyna Nowinskab et al., 2020 : Alkali metals association in biomass and their impact on ash melting behaviour, Journal of Fuels. 261, pp.1-17. https://doi.org/10.1016/j.fuel.2019.116421