DOI QR코드

DOI QR Code

Effects of Chloride and Surfactant Addition on the Copper Leaching During Medium-temperature Pressure Leaching of Chalcopyrite

황동석의 중온 가압침출 중 염소이온과 계면활성제 첨가가 구리침출에 미치는 영향

  • Yong Hoon Lim (Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Young Hun Kim (Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Seung Hyun Kim (Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Hong Ik Lee (Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Hyunkyoo Park (Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Kyoungkeun Yoo (Korea Maritime and Ocean University)
  • Received : 2023.08.07
  • Accepted : 2023.08.22
  • Published : 2023.08.31

Abstract

When the pressure leaching process of chalcopyrite is operated in the low and medium temperature range of 90℃~150℃, the sulfur component in chalcopyrite is converted to elemental sulfur, which suppresses the leaching of copper. In the present study, the copper leaching rate was improved by adding chloride ions and surfactants during the medium-temperature pressure leaching process at 150℃. Using the autoclave equipped with a 2L reactor made of titanium, a pressure leach tests were conducted for 180 min using 100g of chalcopyrite concentrate with D90 particle sizes of 10㎛ and 45㎛ in 5g/L and 50g/L sulfuric acid solutions. At 50g/L sulfuric acid solution without chloride ion and surfactant, when a sample with a D90 particle size of 45㎛ was used, the copper leaching efficiency after 180 min was 48%. As a result of leaching by adding 12g/L of chloride ions such as HCl, CuCl2, and NaCl, the leaching efficiencies increased to 96% and 97%, respectively, by adding HCl and CuCl2. As a result of a pressure leaching tests by adding surfactants of SLS (Sodium lignosulfonate) and CLS (calcium lignosulfonate), the leaching efficiency was over 99%. Consequentially, copper leaching efficiency increased when chloride ions and surfactants were added in 50g/L sulfuric acid solution.

황동석의 가압침출공정을 90℃~150℃의 저온 및 중온 범위에서 운영하면 황동석 중 황성분이 단체황으로 전환되며 구리의 침출을 억제한다. 본 연구에서는 150℃의 중온 가압침출공정 중 염소이온과 계면활성제를 첨가하여 구리침출율을 개선하고자 하였다. 티타늄 재질의 2L 반응기를 탑재한 가압침출기를 이용해 5g/L과 50g/L 황산용액에서 D90 입도가 10㎛와 45㎛인 황동석 정광분말 100g을 이용해 180분 동안 가압침출실험을 진행하였다. 50g/L 황산용액 및 염소이온과 계면활성제가 없는 조건에서 D90 입도가 45㎛인 시료를 사용한 경우, 180분 침출 후 구리의 침출율은 48%로 나타났다. 염산, 염화구리, 염화나트륨 등 12g/L의 염소이온을 첨가하여 침출한 결과, 염산과 염화구리 첨가시 침출율이 각각 96%와 97%로 분석되었다. SLS(Sodium lignosulfonate)와 CLS(calcium lignosulfonate)의 계면활성제를 첨가하여 가압침출실험을 진행한 결과, 99% 이상의 침출율을 나타내었다. 결과적으로 50g/L 황산용액에서 염소이온과 계면활성제를 첨가한 경우 구리침출율은 상승하였다.

Keywords

Acknowledgement

이 연구는 한국광물자원공사 자체연구사업인 '가압침출 및 오토클레이브 운영기술'로서 수행된 내용의 일부입니다. 연구를 지원해주신 관계자 여러분께 감사드립니다.

References

  1. Kang, L., An, H., Kang, H.Y., et al., 2019 : Analysis of commercial recycling technology and research trend for waste Cu scrap in Korea, Resources Recycling, 28(1), pp.3-14.  https://doi.org/10.7844/KIRR.2019.28.1.3
  2. Barton, I.F., Hiskey, J.B. 2022 : Chalcopyrite leaching in novel lixiviants, Hydrometallurgy, 207, 105775. 
  3. Kim, S., Kim, Y., Kim, S., et al., 2019 : Analyses of Physical Properties of Copper-contained Sludge Pelletized for Applied Pyro-metallurgical Process, Journal of the Korean Institute of Resources Recycling, 28(2), pp.31-39.  https://doi.org/10.7844/KIRR.2019.28.2.31
  4. Cordoba, E.M., Munoz, J.A., Blazquez, M.L., et al., 2008 : Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy, 93(3-4), pp.81-87.  https://doi.org/10.1016/j.hydromet.2008.04.015
  5. Yoo, K., Lee, J.C., Jeong, J., et al., 2008 : Indirect Leaching Technologies of Chalcopyrite, Journal of the Korean Society of Mineral and Energy Resources Engineers, 45(2), pp. 202-207. 
  6. Watling, H.R., 2013 : Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options, Hydrometallurgy, 140, pp.163-180.  https://doi.org/10.1016/j.hydromet.2013.09.013
  7. Dreisinger, D., 2006 : Copper leaching from primary sulfides: Options for biological and chemical extraction of copper, Hydrometallurgy, 83(1-4), pp.10-20.  https://doi.org/10.1016/j.hydromet.2006.03.032
  8. Hackl, R.P., Dreisinger, D.B., Peters, E., et al., 1995 : Passivation of chalcopyrite during oxidative leaching in sulfate media, Hydrometallurgy, 39, pp.25-48.  https://doi.org/10.1016/0304-386X(95)00023-A
  9. Sahu, S.K., Asselin, E. 2011 : Characterization of residue generated during medium temperature leaching of chalcopyrite concentrate under CESL conditions, Hydrometallurgy, 110(1-4), pp.107-114.  https://doi.org/10.1016/j.hydromet.2011.09.003
  10. McDonald, R.G. Muir, D.M., 2007 : Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products, Hydrometallurgy, 86, pp.191-205.  https://doi.org/10.1016/j.hydromet.2006.11.015
  11. McDonald, R.G. and Muir, D.M., 2007 : Pressure oxidation leaching of chalcopyrite: Part II: comparison of medium temperature kinetics and products and effect of chloride ion, Hydrometallurgy, 86, pp.206-220.  https://doi.org/10.1016/j.hydromet.2006.11.016
  12. Lim, Y.H., Kim, S.H., Lee, H.I., et al., 2019 : Leaching of copper from chalcopyrite using 50 L pressure oxidation autoclave, Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(4), pp.326-333. https://doi.org/10.32390/ksmer.2019.56.4.326