DOI QR코드

DOI QR Code

Comparison of Conchocelis Formation in the Oyster Shell of Neopyropia Yezoensis with Water Temperature Change

수온 변화에 따른 방사무늬김(Neopyropia yezoensis) 패각 사상체의 각포자 형성량 비교

  • Eun Taek Lee (Department of Aquaculture, Korea National College of Agriculture and Fisheries) ;
  • Dal Sang Jeong (Department of Aquaculture, Korea National College of Agriculture and Fisheries) ;
  • Chul Won Kim (Department of Aquaculture, Korea National College of Agriculture and Fisheries) ;
  • Sung Je Choi (Department of Aquaculture, Korea National College of Agriculture and Fisheries)
  • 이은택 (국립한국농수산대학교 농수산융합학부) ;
  • 정달상 (국립한국농수산대학교 농수산융합학부) ;
  • 김철원 (국립한국농수산대학교 농수산융합학부) ;
  • 최성제 (국립한국농수산대학교 농수산융합학부)
  • Received : 2023.09.11
  • Accepted : 2023.10.13
  • Published : 2023.10.30

Abstract

This study investigated effect of water temperature change on the formation and release of conchospores of Neopyropia yezoensis. We observed that conchocelis growth and conchospores formation in oyster shell at labolatory during 7 weeks. In order to investigate the amount of conchospore formation in oyster shells, which was being cultured at 28℃, was moved to 10℃, 18℃, 28℃, and culture during 6 weeks. At 10℃, we observed an average of 127 for 1 week, 127 for 2 weeks, 95 for 3 weeks, 90 for 4 weeks, 76 for 5 weeks, and 75 for 6 weeks. At 18℃, we observed an average of 141 for 1 week, 135 for 2 weeks, 94 for 3 weeks, 153 for 4 weeks, 162 for 5 weeks, and 2 for 6 weeks. At 28℃, we observed an average of 167 for 1 week, 102 for 2 weeks, 148 for 3 weeks, 157 for 4 weeks, 270 for 5 weeks, and 138 for 6 weeks. Conchospores released from the shell grew into a young thalli in the culture for 6 weeks, and the number of ones was counted. The number of young thalli were investigated at 10℃, 0 for 1 week, 189 for 2 weeks, 200 for 3 weeks, 89 for 4 weeks, 56 for 5 weeks and 27 for 6 weeks. At 18℃, It observed 0 for 1 week, 26 for 2 weeks, 546 for 3 weeks, 16 for 4 weeks, 17 for 5 weeks and 154 for 6 weeks. It was not observed at 28℃.

본 연구는 실내배양을 통해 방사무늬김(N. yezoensis) 패각 사상체의 성장과 수온변화가 각포자 형성 및 방출에 미치는 영향을 조사하였다. 7주간의 실내배양을 통해서 유리 사상체가 패각에 잠입하여 성장하고 각포자가 형성되는 것을 관찰할 수 있었다. 또한 실내 배양기에서 패각 사상체 성장 및 각포자 형성이 충분히 가능하였고, 배양기간도 단축하는 결과를 보였다. 패각 내 각포자 형성량을 조사하기 위하여 배양온도를 10℃와 18℃, 28℃로 나누어 6주간 배양하였다. 10℃에서는 평균 1주 127개, 2주 127개, 3주 95개, 4주 90개, 5주 76개, 6주 75개가 관찰되었고, 18℃에서는 평균 1주 141개, 2주 135개, 3주 94개, 4주 153개, 5주 162개, 6주 2개가 관찰되었으며, 28℃에서는 1주 167개, 2주 102개, 3주 148개, 4주 157개, 5주 270개, 6주 138개가 관찰되었다. 각포자 평균 형성량은 28℃가 가장 많았고, 18℃, 10℃ 순이었다. 패각에서 방출된 각포자 수는 직접적으로 계수가 어려움에 따라 유엽의 개체수로 방출량을 확인하였다. 각포자 방출에 따른 유엽 개체수는 10℃에서 1주 0개, 2주 189개, 3주 200개, 4주 89개, 5주 56개, 6주 27개가 관찰되었고, 18℃에서는 1주 0개, 2주 26개, 3주 546개, 4주 16개, 5주 17개체, 6주 154개체가 관찰되었으며 28℃에서는 거의 관찰되지 않았다. 본 연구를 통하여 패각 속에서 형성된 각포자는 28℃에서 18℃ 조건으로 옮긴 뒤 3주 후 최대 방출하였고, 이어서 3주 후 2번째로 많이 방출하는 패턴을 확인하였다.

Keywords

Acknowledgement

본 연구 결과물은 해양수산부(KIMST)의 재원으로 "수산디지털 수산종자검인증기술개발(No.20220572)"의 지원을 받아 연구되었습니다.

References

  1. 高楠表. 1997. 韓國에 있어서 海藻養殖의 現況. 水産增殖. 45(4): 565-571. 
  2. 김영종, 조주현, 최성제, 신종암. 1999. 김속(Porphyra) 3종의 패각 사상체 성숙 및 채묘에 미치는 조도의 영향. 여수대학교 수산과학연구소 연구보고 8: 154-159.
  3. 박정광, 김은송, 장형석, 김주희. 2018. 2018 국가 해양수산 생물종 목록집. V해산식물. 국립해양생물자원관. pp. 20. 
  4. 이기채. 2018. 잇바디돌김(Pyropia dentata)과 긴잎돌김(P. pseudolinearis)의 패각 사상체 종묘생산을 위한 환경관리. 목포대학교 석사학위논문. pp. 30. 
  5. 허진석, 박은정, 황미숙, 최한길. 2021. 김(Pyropia spp.) 3종 유리 사상체의 패각잠입에 대한 패각 종류, 광과 온도의 영향. 한국수산과학회지 54: 23-30.  https://doi.org/10.5657/KFAS.2021.0023
  6. Drew KM. 1949. Conchocelis-phase in the life history of Porphyra umbilicalis (L.) Kutz. Nature. 166: 748-749.  https://doi.org/10.1038/164748a0
  7. Frazer AWJ, Brown MT. 1995. Growth of the conchocelis phase of Porphyra columbina (Bangiales, Rhodophyta) at different temperatures and levels of light, nitrogen and phosphorus. Phycolgical Research 43: 249-253.  https://doi.org/10.1111/j.1440-1835.1995.tb00031.x
  8. He P, Yarish C. 2006. The developmental regulation of mass cultures of free-living conchocelis for commercial net seeding of Porphyra leucosticta from Northeast America. Aquaculture 257: 373-381.  https://doi.org/10.1016/j.aquaculture.2006.03.017
  9. Hwang EK, Park CS. 2020. Seaweed cultivation and utilization of Korea. Algae 35:107-121.  https://doi.org/10.4490/algae.2020.35.5.15
  10. Kim JK, Yarish C, Hwang EK, Park MS, Kim YD. 2017. Seaweed aquacultue: cultivation technologies, challenges and its ecosystem services. Algae 32: 1-13.  https://doi.org/10.4490/algae.2017.32.3.3
  11. Knoop J, Griffin JN, Barrento S. 2020. Cultivation of early life history stages of Porphyra dioica from the British IsIes. Journal of Applied Phycology 32: 459-471.  https://doi.org/10.1007/s10811-019-01930-6
  12. Kim JH, Choi SJ, Lee SY. 2019. Effects of temperature and light on photosynthesis and growth of red alga Pyropia dentata (Bangiales, Rhodophyta) in a conchocelis phase. Aquaculture 505: 167-172.  https://doi.org/10.1016/j.aquaculture.2019.02.058
  13. Li X, Yang L, He PM. 2011. Formation and growth of free-living conchosprangia of Porphyra yezoensis: effects of photoperiod, temperature and light intensity. Aquaculture research 42: 1079-1086.  https://doi.org/10.1111/j.1365-2109.2010.02691.x
  14. Liang Z, Liu F, Wang W, Zhang P, Yuan Y, Liu Y, Yao H,, Jia R, Sun X, Wang F. 2022. Physiological and biochemical responses to light and temperature stress in free-living conchocelis of Neopyropia katadae (Bangiales, Rhodophyta). Journal of Applied Phycology 34: 1059-1072.  https://doi.org/10.1007/s10811-022-02691-5
  15. Lin R, Stekoll MS. 2007. Effects of plant growth substances on the conchocelis phase of Alaskan Porphyra (Bangiales, Rhodophyta) species in conjunction with environmental variables. J Phycol 43: 1094-1103.  https://doi.org/10.1111/j.1529-8817.2007.00388.x
  16. Lin R, Lindstrom SC, Stekoll MS. 2008. Photosynthesis and respiration of the conchocelis stage of Alaskan Porphyra (Bangiales, Rhodophyta) species in response to environmental variables. J Phycol 44: 573-583.  https://doi.org/10.1111/j.1529-8817.2008.00504.x
  17. Lin R, Stekoll MS. 2011. Phycobilin content of the conchocelis phase of alaskan porphyra (Bangiales, Rhodophyta) species: responses to environment variables. Journal of Phycology 47: 208-214.  https://doi.org/10.1111/j.1529-8817.2010.00933.x
  18. Lin R, Stekoll MS. 2013. Responses of chlorophyll a content for conchocelis phase of alaskan porphyra (bangiales, rhodophyta) species to environmental factors 1: 28-39.  https://doi.org/10.11648/j.abb.20130101.14
  19. Lu S, Yarishi C. 2011. Interaction of photoperiod and temperature in the development of conchocelis of Porphyra purpurea (Rhodophyta: Bangiales). Journal of Applied Phycology 23: 89-96.  https://doi.org/10.1007/s10811-010-9541-7
  20. Stekoll MS, Lin R, Lindstrom SC. 1999. Porphyra cultivation in Alaska: conchocelis growth of three indigenous species. Hydrobiologia 398/399: 291-297.  https://doi.org/10.1023/A:1017043813609
  21. Varela-Alvarez W, Stengel DB, Guiry MD. 2004. The use of image processing in assessing conchocelis growth and conchospore production in Porphyra linearis. Phycologia 43: 282-287.  https://doi.org/10.2216/i0031-8884-43-3-282.1
  22. Zhong Z, Wang W, Sun X, Liu F, Liang Z, Wang F, Chen W. 2016. Developmental and physiological properties of Pyropia dentata (Bangiales, Rhodophyta) conchocelis in culture. J Appl Phcol 28: 3435-3445.  https://doi.org/10.1007/s10811-016-0877-5