과제정보
이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(RS-2023-00264747)
참고문헌
- Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A. (2018) Machine Learning for Molecular and Materials Science, Nat., 559(7715), pp.547~555. https://doi.org/10.1038/s41586-018-0337-2
- Cetinic, E., Lipic, T., Grgic, S. (2018) Fine-Tuning Convolutional Neural Networks for Fine Art Classification, Expert Syst. Appl., 114, pp.107~118. https://doi.org/10.1016/j.eswa.2018.07.026
- Chung, S.-Y., Lehmann, C., Elrahman, M., Stephan, D. (2018) Microstructural Characterization of Foamed Concrete with Different Densities using Microscopic Techniques, Cem. Wapno Beton, 3, pp.216~225.
- Coker, D.A., Torquato, S. (1995) Extraction of Morphological, Quantities from a Digitized Medium, J. Appl. Phys., 77(12), pp.6087~6099. https://doi.org/10.1063/1.359134
- Ghiringhelli, L.M., Vybiral, J., Levchenko, S.V., Draxl, C., Scheffler, M. (2015) Big Data of Materials Science: Critical Role of the Descriptor, Phys. Rev. Lett., 114(10), p.105503.
- Goodfellow, I., Bengio, Y., Courville, A. (2016) Deep Learning, MIT Press, p.800.
- Han, T.-S., Zhang, X., Kim, J.-S., Chung, S.-Y., Lim, J.-H., Linder, C. (2018) Area of Linal-Path Function for Describing the Pore Microstructures of Cement Paste and Their Relations to the Mechanical Properties Simulated from µ-CT Microstructures, Cem. Concr. Compos., 89, pp.1~17. https://doi.org/10.1016/j.cemconcomp.2018.02.008
- He, K., Zhang, X., Ren, S., Sun, J. (2016) Deep Residual Learning for Image Recognition, Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.770~778.
- Kim, J.-S., Chung, S.-Y., Stephan, D., Han, T.-S. (2019a) Issues on Characterization of Cement Paste Microstructures from µ-CT and Virtual Experiment Framework for Evaluating Mechanical Properties, Constr. & Build. Mater., 202, pp.82~102. https://doi.org/10.1016/j.conbuildmat.2019.01.030
- Kim, J.-S., Kim, J.-H., Han, T.-S. (2019b) Microstructure Characterization of Cement Paste from Micro-CT and Correlations with Mechanical Properties Evaluated from Virtual and Real Experiments, Mater. Charact., 155, p.109807.
- Kim, J.-S., Lim, J.-H., Stephan, D., Park, K., Han, T.-S. (2022) Mechanical behavior Comparison of Single and Multiple Phase Models for Cement Paste using Micro-CT Images and Nanoindentation, Constr. & Build. Mater., 342, p.127938.
- Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012) Imagenet Classification with Deep Convolutional Neural Networks, In Advances in Neural Information Processing Systems, pp. 1097~1105.
- Ma, H., Xu, B., Liu, J., Pei, H., Li, Z. (2014) Effect of Water Content, Magnesia-to-Phosphate Molar Ratio and Age on Pore Structure, Strength and Permeability of Magnesium Potassium Phosphate Cement Paste, Mater. Des., 64, pp. 497~502. https://doi.org/10.1016/j.matdes.2014.07.073
- Maruyama, I., Nishioka, Y., Igarashi, G., Matsui, K. (2014) Microstructural and Bulk Property Changes in Hardened Cement Paste During the First Drying Process, Cem. Concr. Res., 58, pp.20~34. https://doi.org/10.1016/j.cemconres.2014.01.007
- Miehe, C., Schanzel, L.-M., Ulmer, H. (2015) Phase Field Modeling of Fracture in Multi-Physics Problems, Part I: Balance of Crack Surface and Failure Criteria for Brittle Crack Propagation in Thermo-Elastic Solids, Comput. Methods Appl. Mech. Eng., 294, pp.449~485. https://doi.org/10.1016/j.cma.2014.11.016
- Miehe, C., Hofacker, M., Welschinger, F. (2010) A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation based on Operator Splits, Comput. Methods Appl. Mech. & Eng., 199(45-48), pp.2765~2778. https://doi.org/10.1016/j.cma.2010.04.011
- Pichler, B., Hellmich, C., Eberhardsteiner, J., Wasserbauer, J., Termkhajornkit, P., Barbarulo, R., Chanvillard, G. (2014) Effect of Gelspace Ratio and Microstructure on Strength of Hydrating Cementitious Materials: An Engineering Micromechanics Approach, Cem & Concr. Res., 45, pp.55~68.
- Seko, A., Togo, A., Tanaka, I. (2018) Descriptors for Machine Learning of Materials Data, Nanoinformatics; Tanaka, I., Ed.; Springer: Singapore.
- Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D. (2016) Grad-cam: Why Did You Say that? Visual Explanations from Deep Networks via Gradient-based Localization, arXiv preprint arXiv:1610.02391.
- Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv preprint arXiv:1409.1556.
- Singh, H., Gokhale, A., Lieberman, S., Tamirisakandala, S. (2008) Image based Computations of Lineal Path Probability Distributions for Microstructure Representation, Mater. Sci. Eng., A, 474, pp.104~111. https://doi.org/10.1016/j.msea.2007.03.099
- Swann, E., Sun, B., Cleland, D.M. (2018) Barnard, A.S. Representing Molecular and Materials Data for Unsupervised Machine Learning, Mol. Simul., 44(11), pp.905~920. https://doi.org/10.1080/08927022.2018.1450982
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015) Going Deeper with Convolutions, Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.1~9.
- Takahashi, K., Tanaka, Y. (2016) Materials Informatics: A Journey Towards Material Design and Synthesis, Dalton Trans., 45(26), pp.1497~1499.
- Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F., Leprevost, F. (2020) Reducing Overfitting and Improving Generalization in Training Convolutional Neural Network (CNN) under Limited Sample Sizes in Image Recognition, In 2020-5th International Conference on Information Technology, pp.300~305.
- Wu, J.-Y. (2019) X-ray Computed Tomography Images based Phase-Field Modeling of Mesoscopic Failure in Concrete, Eng. Fract. Mech., 208, pp.151~170. https://doi.org/10.1016/j.engfracmech.2019.01.005
- Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A. (2016) Learning Deep Features for Discriminative Localization, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2921~2929.
- Ziletti, A., Kumar, D., Scheffler, M., Ghiringhelli, L.M. (2018) Insightful Classification of Crystal Structures using Deep Learning, Nat. Commun, 9(1), p.2775.