DOI QR코드

DOI QR Code

Physicochemical and Functional Properties of Yeast-Fermented Cabbage

  • Ahhyeon Chun (School of Food Science and Biotechnology, Kyungpook National University) ;
  • So Jeong Paik (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Jongbeom Park (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Ryeongeun Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Sujeong Park (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Sung Keun Jung (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Soo Rin Kim (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2023.02.20
  • Accepted : 2023.06.12
  • Published : 2023.10.28

Abstract

Microbial fermentation is often used to improve the functionality of plant-based food materials. Herein, we investigated changes in the physicochemical and functional properties of cabbage during yeast fermentation to develop new products using fermented cabbage. Among the 8 types of food-grade yeast, both Saccharomyces cerevisiae and Saccharomyces boulardii fermented 10% cabbage powder solution (w/w) the most effectively, leaving no soluble sugars after 12 h of fermentation. In addition, the yeast fermentation of cabbage resulted in functionally positive outcomes in terms of sulforaphane content, antioxidant properties, and anti-inflammatory activity. Specifically, the yeast-fermented cabbages contained about 500% more sulforaphane. The soluble fraction (5 ㎍/ml) of yeast-fermented cabbage had no cytotoxicity in murine RAW 264.7 cells, and the radical-scavenging capacity was equivalent to 1 ㎍/ml of ascorbic acid. Moreover, cabbage fermented with S. boulardii significantly suppressed both lipopolysaccharides (LPS)-induced nitric oxide production and LPS-induced reactive oxygen species production in RAW 264.7 cells, suggesting a potential anti-inflammatory effect. These results support the idea that yeast fermentation is promising for developing functionally improved cabbage products.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the "Regional Specialized Industry Development Plus Program (R&D, S3273067)" supervised by the Korea Technology and Information Promotion Agency for SMEs (TIPA).

References

  1. Xu YY, Xiao YD, Lagnika C, Li DJ, Liu CQ, Jiang N, et al. 2020. A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. Capitate var L.) subjected to different drying methods. Food Chem. 309: 124935.
  2. Nawaz H, Shad MA, Rauf A. 2018. Optimization of extraction yield and antioxidant properties of Brassica oleracea Convar Capitata Var L. leaf extracts. Food Chem. 242: 182-187. https://doi.org/10.1016/j.foodchem.2017.09.041
  3. Jeong MS, Cho SJ. 2022. Assessment of the nutritional and antioxidant properties of five Brassicaceae (Cruciferae) vegetable byproducts. Korean Soc. Food Sci. Nutr. 51: 1166-1170. https://doi.org/10.3746/jkfn.2022.51.11.1166
  4. Men X, Han X, Lee SJ, Oh G, Park KT, Han JK, et al. 2022. Anti-obesogenic effects of sulforaphane-rich broccoli (Brassica oleracea var. italica) sprouts and myrosinase-rich mustard (Sinapis alba L.) seeds in vitro and in vivo. Nutrients 14: 3814.
  5. Beganovic J, Kos B, Pavunc AL, Uroic K, Jokic M, Suskovic J. 2014. Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol. Res. 169: 623-632. https://doi.org/10.1016/j.micres.2013.09.015
  6. Heenan C, Adams M, Hosken R, Fleet G. 2002. Growth medium for culturing probiotic bacteria for applications in vegetarian food products. LWT-Food Sci. Technol. 35: 171-176. https://doi.org/10.1006/fstl.2001.0833
  7. Berner LA, O'Donnell JA. 1998. Functional foods and health claims legislation: applications to dairy foods. Int. Dairy J. 8: 355-362. https://doi.org/10.1016/S0958-6946(98)00058-2
  8. McNaught C, MacFie J. 2001. Probiotics in clinical practice: a critical review of the evidence. Nutr. Res. 21: 343-353. https://doi.org/10.1016/S0271-5317(00)00286-4
  9. Rafter J. 2003. Probiotics and colon cancer. Best Prac. Res. Clin. Gastroenterol. 17: 849-859. https://doi.org/10.1016/S1521-6918(03)00056-8
  10. Saarela M, Lahteenmaki L, Crittenden R, Salminen S, Mattila-Sandholm T. 2002. Gut bacteria and health foods-the European perspective. Int. J. Food Microbiol. 78: 99-117. https://doi.org/10.1016/S0168-1605(02)00235-0
  11. Lee HJ, Park SE, Choi JH, Kim KM. 2022. Biological activity of Brassica oleracea var. capitata fermented with Lactobacillus plantarum. Korean J. Food Preserv. 29: 241-253. https://doi.org/10.11002/kjfp.2022.29.2.241
  12. Park SE, Choi JH, Kim KM. 2022. Anti-inflammatory effect of cabbage (Brassica oleracea L var. capitata) fermented with a mixed culture of Lactobacillus acidophilus and Lactiplantibacillus plantarum. Korean J. Food Preserv. 29: 166-174. https://doi.org/10.11002/kjfp.2022.29.1.166
  13. Seo SO, Park SK, Jung SC, Ryu CM, Kim JS. 2020. Anti-contamination strategies for yeast fermentations. Microorganisms 8: 274.
  14. Jensen G, Patterson K, Yoon I. 2008. Yeast culture has anti-inflammatory effects and specifically activates NK cells. Comp. Immunol. Microbiol. Inf. Dis. 31: 487-500. https://doi.org/10.1016/j.cimid.2007.08.005
  15. Djeraba A, Quere P. 2000. In vivo macrophage activation in chickens with Acemannan, a complex carbohydrate extracted from Aloe vera. Int. J. Immunopharmacol. 22: 365-372. https://doi.org/10.1016/S0192-0561(99)00091-0
  16. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25: 1822-1832. https://doi.org/10.1038/s41591-019-0675-0
  17. Bendor CD, Bardugo A, Pinhas-Hamiel O, Afek A, Twig G. 2020. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 19: 79.
  18. Kim MJ, Kang HH, Seo YJ, Kim KM, Kim YJ, Jung SK. 2021. Paeonia lactiflora root extract and its components reduce biomarkers of early atherosclerosis via anti-inflammatory and antioxidant effects in vitro and in vivo. Antioxidants (Basel). 10: 1507.
  19. Kim JG, Kang HY, Kim MJ, Lim S, Lee CJ, Kim KM, et al. 2022. 4-phenylpyridine suppresses UVB-induced skin inflammation by targeting c-Src in vitro and in vivo. J. Cell. Mol. Med. 26: 3891-3901. https://doi.org/10.1111/jcmm.17422
  20. Shin M, Kim Jw, Ye S, Kim S, Jeong D, Lee DY, et al. 2019. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Appl. Microbiol. Biotechnol. 103: 5435-5446. https://doi.org/10.1007/s00253-019-09829-5
  21. Tanongkankit Y, Chiewchan N, Devahastin S. 2011. Evolution of anticarcinogenic substance in dietary fibre powder from cabbage outer leaves during drying. Food Chem. 127: 67-73. https://doi.org/10.1016/j.foodchem.2010.12.088
  22. Hwang JH, Kim KJ, Ryu SJ, Lee BY. 2016. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem. Biol. Interact. 248: 1-7. https://doi.org/10.1016/j.cbi.2016.01.020
  23. Chidi BS, Rossouw D, Buica AS, Bauer FF. 2015. Determining the impact of industrial wine yeast strains on organic acid production under white and red wine-like fermentation conditions. South African J. Enol. Vitic. 36: 316-327. https://doi.org/10.21548/36-3-965
  24. Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K. 2019. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic J. Biotechnol. 37: 56-60. https://doi.org/10.1016/j.ejbt.2018.11.003
  25. SOUZA HFd, Carosia MF, Pinheiro C, CARVALHO MVd, OLIVEIRA CAFd, Kamimura ES. 2021. On probiotic yeasts in food development: Saccharomyces boulardii, a trend. Food Sci. Technol. 42: e92321.
  26. Cai YX, Wang JH, McAuley C, Augustin MA, Terefe NS. 2019. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. J. Funct. Foods 61: 103461.
  27. Lekcharoenkul P, Tanongkankit Y, Chiewchan N, Devahastin S. 2014. Enhancement of sulforaphane content in cabbage outer leaves using hybrid drying technique and stepwise change of drying temperature. J. Food Eng. 122: 56-61. https://doi.org/10.1016/j.jfoodeng.2013.08.037
  28. Koo SY, Cha KH, Song DG, Chung D, Pan CH. 2011. Amplification of sulforaphane content in red cabbage by pressure and temperature treatments. J. Korean Soc. Appl. Biol. Chem. 54: 183-187. https://doi.org/10.3839/jksabc.2011.030
  29. Baek SH, Park T, Kang MG, Park D. 2020. Anti-inflammatory activity and ROS regulation effect of sinapaldehyde in LPS-stimulated RAW 264.7 macrophages. Molecules 25: 4089.
  30. Kim MJ, Kim JG, Sydara KM, Lee SW, Jung SK. 2020. Croton hirtus L'Her extract prevents inflammation in RAW264.7 macrophages via inhibition of NF-kappa B signaling pathway. J. Microbiol. Biotechnol. 30: 490-496. https://doi.org/10.4014/jmb.1908.08045
  31. Kim JG, Kim MJ, Lee JS, Sydara K, Lee SW, Byun S, et al. 2020. Smilax guianensis vitman extract prevents LPS-induced inflammation by inhibiting the NF-kappa B pathway in RAW 264.7 cells. J. Microbiol. Biotechnol. 30: 822-829. https://doi.org/10.4014/jmb.1911.11042