Acknowledgement
This paper was supported by Konkuk University Researcher Fund in 2021. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government. (MSIT) (NRF-2023R1A2C1004930).
References
- Arumugam M, Raes J, Pelletier E, Paslier D le, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. https://doi.org/10.1038/nature09944
- Ley RE, Hamady M, Lozupone C, Turnbaugh, PJ, Ramey RR, Bircher JS, et al. 2008. Evolution of mammals and their gut microbes. Science 320: 1647-1651. https://doi.org/10.1126/science.1155725
- Bull MJ, Plummer NT, Part 1: The Human Gut Microbiome in Health and Disease. 2014. Integrative Medicine: Clin. J. 13: 17.
- Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. 2015. Curr. Opin. Gastroenterol. 31: 69.
- Kasprzak-Drozd K, Oniszczuk T, Stasiak M, Oniszczuk A. 2021. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int. J. Mol. Sci. 22: 3715.
- Alves-Santos AM, Sugizaki CSA, Lima GC, Naves MMV. 2020. Prebiotic effect of dietary polyphenols: A systematic review. J. Funct. Foods 74: 104169.
- Sun H, Chen Y, Cheng M, Zhang X, Zheng X, Zhang Z. 2018. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J. Food Sci. Technol. 55: 399-407. https://doi.org/10.1007/s13197-017-2951-7
- Da Silva Pinto M. Tea: a new perspective on health benefits. 2013. Food Res. Int. 53: 558-567. https://doi.org/10.1016/j.foodres.2013.01.038
- Balentine DA, Wiseman SA, Bouwens LCM. 1997. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 37: 693-704. https://doi.org/10.1080/10408399709527797
- Stalmach A, Mullen W, Steiling H, Williamson G, Lean MEJ, Crozier A. 2010. Absorption, metabolism, and excretion of green tea flavan-3-Ols in humans with an ileostomy. Mol. Nutr. Food Res. 54: 323-334. https://doi.org/10.1002/mnfr.200900194
- Chen W, Zhu X, Lu Q, Zhang L, Wang X, Liu R. 2020. C-Ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. Food Res. Int. 135: 109271.
- Liu Z, de Bruijn WJC, Bruins ME, Vincken JP. 2020. Reciprocal interactions between Epigallocatechin-3-Gallate (EGCG) and human gut microbiota in vitro. J. Agric. Food Chem. 68: 9804-9815. https://doi.org/10.1021/acs.jafc.0c03587
- Rha CS, Jeong HW, Park S, Lee S, Jung YS, Kim DO. 2019. Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants (Basel) 8: 278.
- Dey P, Sasaki GY, Wei P, Li J, Wang L, Zhu J, et al. 2019. Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation. J. Nutr. Biochem. 67: 78-89. https://doi.org/10.1016/j.jnutbio.2019.01.017
- Li Y, Rahman SU, Huang Y, Zhang Y, Ming P, Zhu L, et al. 2020. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J. Nutr. Biochem. 78: 108324.
- Liu YC, Li XY, Shen L. 2019. Modulation effect of tea consumption on gut microbiota. Appl. Microbiol. Biotechnol. 104: 981-987. https://doi.org/10.1007/s00253-019-10306-2
- Braune A, Blaut M. 2016. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7: 216-234. https://doi.org/10.1080/19490976.2016.1158395
- Cueva C, Silva M, Pinillos I, Bartolome B, Moreno-Arribas MV. 2020. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer. Nutrients 12: 625.
- Kwon MC, Kim YX, Lee S, Jung ES, Singh D, Sung J, et al. 2019. Comparative metabolomics unravel the effect of magnesium oversupply on tomato fruit quality and associated plant metabolism. Metabolites 9: 231.
- Baranyi J, Roberts TA. 1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food. Microbiol. 23: 277-294. https://doi.org/10.1016/0168-1605(94)90157-0
- Cueva C, Gil-Sanchez I, Moreno-Arribas MV, Bartolome B. 2016. Interactions between wine polyphenols and gut microbiota. Wine Safety, Consumer Preference, and Human Health. pp. 259-278.
- Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. 2018. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 57: 1-24. https://doi.org/10.1007/s00394-017-1445-8
- Takagaki A, Nanjo F. 2015. Bioconversion of (-)-Epicatechin, (+)-Epicatechin, (-)-Catechin, and (+)-Catechin by (-)-Epigallocatechin-metabolizing bacteria. Biol. Pharm. Bull. 38: 789-794. https://doi.org/10.1248/bpb.b14-00813
- Sanchez-Patan F, Tabasco R, Monagas M, Requena T, Pelaez C, Moreno-Arribas, et al. 2012. Capability of Lactobacillus Plantarum IFPL935 to catabolize flavan-3-Ol compounds and complex phenolic extracts. J. Agric. Food Chem. 60: 7142-7151. https://doi.org/10.1021/jf3006867
- Chen H, Hayek S, Rivera Guzman J, Gillitt ND, Ibrahim SA, Jobin C, et al. 2012. The microbiota is essential for the generation of black tea theaflavins-derived metabolites. PLoS One 7: e51001.
- Santangelo R, Silvestrini A, Mancuso C. 2019. Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions. Food Chem. Toxicol. 123: 42-49. https://doi.org/10.1016/j.fct.2018.10.042
- Zhu MZ, Li N, Zhou F, Ouyang J, Lu D, Xu W, et al. 2019. Microbial bio-conversion of the chemical components in dark tea. Food Chem. 312: 126043-126043. https://doi.org/10.1016/j.foodchem.2019.126043
- Kosuru RY, Roy A, Das SK, Bera S. 2018. Gallic acid and gallates in human health and disease: Do mitochondria hold the key to success? Mol. Nutr. Food Res. 62: 1700699.
- Shin M, Park E, Lee H. 2019. Plant-inspired pyrogallol-containing functional materials. Adv. Funct. Mater. 29: 1903022.
- Liu M, Xie H, Ma Y, Li H, Li C, Chen L, Jiang B, et al. 2020. High-performance liquid chromatography and metabolomics analysis of tannase metabolism of gallic acid and gallates in tea leaves. J. Agric. Food. Chem. 68: 4946-4954, https://doi.org/10.1021/acs.jafc.0c00513
- Seifried HE, Anderson DE, Fisher EI, Milner JA. 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 18: 567-579 https://doi.org/10.1016/j.jnutbio.2006.10.007
- Duda-Chodak A, Tarko T, Satora P, Sroka P. 2015. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 54: 325-341. https://doi.org/10.1007/s00394-015-0852-y
- Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. 2016. The reciprocal interactions between polyphenols and gut microbiota and effects on bio-accessibility. Nutrients 8: 78.
- Xu J, Chen HB, Li SL. 2017. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Med. Res. Rev. 37: 1140-1185. https://doi.org/10.1002/med.21431
- Zhang Z, Lv J, Pan L, Zhang Y. 2018. Roles and applications of probiotic Lactobacillus strains. Appl. Microbiol. Biotechnol. 102: 8135-8143. https://doi.org/10.1007/s00253-018-9217-9
- Liu YW, Liong MT, Tsai YC. 2018. New perspectives of Lactobacillus Plantarum as a probiotic: The gut-heart-brain axis. J. Microbiol. 56: 601-613. https://doi.org/10.1007/s12275-018-8079-2
- Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The impact of Lactobacillus Plantarum on the gut microbiota of mice with DSS-induced colitis. Biomed. Res. Int. 2019: 3921315.
- Mu Q, Tavella VJ, Luo XM. 2018. Role of Lactobacillus Reuteri in human health and diseases. Front. Microbiol. 9: 757.
- Ahn YJ, Kawamura T, Kim M, Yamamoto T, Mitsuoka T. 1991. Tea polyphenols: Selective growth inhibitors of Clostridium spp. Agric. Biol. Chem. 55: 1425-1426. https://doi.org/10.1080/00021369.1991.10870770
- Guo P, Zhang K, Ma X, He P. 2020. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 11: 24.
- Zafar H, Saier MH. 2021. Gut Bacteroides species in health and disease. Gut Microbes 13: 1-20. https://doi.org/10.1080/19490976.2020.1848158
- Gauffin CP, Santacruz A, Moya A, Sanz Y. 2012. Bacteroides Uniformis CECT 7771 ameliorates metabolic and immuno-logical dysfunction in mice with high-fat-diet induced obesity. PLoS One 7: e41079.
- Fernandez-Murga ML, Yolanda S. 2016. Safety assessment of Bacteroides uniformis CECT 7771 isolated from stools of healthy breastfed infants. PLoS One 11: e0145503.
- Zhou C, Zhao H, Xiao X, Chen B, Guo R, Wang Q, et al. 2020. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J. Autoimmun. 107: 102360.
- Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, et al. 2021. Parabacteroides Distasonis: Intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 13: 192241.
- Reygaert WC. 2014. The antimicrobial possibilities of green tea. Front. Microbiol. 5: 434.
- Michlmayr H, Kneifel W. 2014. β-glucosidase activities of lactic acid bacteria: Mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett. 352: 1-10. https://doi.org/10.1111/1574-6968.12348
- de Moraes Barros HR, Garcia-Villalba R, Tomas-Barberan FA, Genovese MI. 2016. Evaluation of the distribution and metabolism of polyphenols derived from cupuassu (Theobroma grandiflorum) in mice gastrointestinal tract by UPLC-ESI-QTOF. J. Funct. Foods 22: 477-489. https://doi.org/10.1016/j.jff.2016.02.009