DOI QR코드

DOI QR Code

Genome Analysis and Optimization of Caproic Acid Production of Clostridium butyricum GD1-1 Isolated from the Pit Mud of Nongxiangxing Baijiu

  • Min Li (College of Bioengineering, Sichuan University of Science and Engineering) ;
  • Tao Li (College of Bioengineering, Sichuan University of Science and Engineering) ;
  • Jia Zheng (Wuliangye Yibin Co., Ltd.) ;
  • Zongwei Qiao (Wuliangye Yibin Co., Ltd.) ;
  • Kaizheng Zhang (College of Bioengineering, Sichuan University of Science and Engineering) ;
  • Huibo Luo (College of Bioengineering, Sichuan University of Science and Engineering) ;
  • Wei Zou (College of Bioengineering, Sichuan University of Science and Engineering)
  • Received : 2023.04.11
  • Accepted : 2023.06.07
  • Published : 2023.10.28

Abstract

Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35℃, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.

Keywords

Acknowledgement

This work was supported by grants from the Cooperation Project of Wuliangye Group Co., Ltd., Sichuan University of Science & Engineering, China (CXY2019ZR011), and Sichuan University of Science & Engineering (Item No. 2020RC36). We would also like to thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

References

  1. Jin G, Zhu Y, Xu Y. 2017. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 63: 18-28.  https://doi.org/10.1016/j.tifs.2017.02.016
  2. Xu Y, Zhao J, Liu X, Zhang C, Zhao Z, Li X, et al. 2022. Flavor mystery of Chinese traditional fermented baijiu: the great contribution of ester compounds. Food Chem. 369: 130920. 
  3. Fan G, Liu P, Chang X, Yin H, Cheng L, Teng C, et al. 2021. Isolation and identification of a high-yield ethyl caproate-producing yeast from daqu and optimization of its fermentation. Front. Microbiol. 12: 663744. 
  4. Hu X, Du H, Ren C, Xu Y. 2016. Illuminating anaerobic microbial community and cooccurrence patterns across a quality gradient in Chinese Liquor fermentation pit muds. Appl. Environmen. Microbiol. 82: 2506-2515.  https://doi.org/10.1128/AEM.03409-15
  5. Qian W, Lu ZM, Chai LJ, Zhang XJ, Li Q, Wang ST, et al. 2021. Cooperation within the microbial consortia of fermented grains and pit mud drives organic acid synthesis in strong-flavor Baijiu production. Food Res. Int. 147: 110449. 
  6. Chai L, Qian W, Zhong X, Lu Z, Zhang X, Wang S, et al. 2020. Distribution of archaeal community in the mud pit during strong-flavor baijiu fermentation. Chin J. Biotechnol. 36: 2635-2643. 
  7. W ZX, Z HB. 2016. Baijiu, Chinese liquor: history, classification and manufacture. J. Ethnic Foods 3: 19-25.  https://doi.org/10.1016/j.jef.2016.03.001
  8. Yao F, Yi B, Shen C, Tao F, Liu Y, Lin Z, et al. 2015. Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Sci. Rep. 5: 9553. 
  9. Y X, B S, G F, al. e. 2017. The brewing process and microbial diversity of strong flavour Chinese spirits: a review. J. Inst. Brew. 123: 5-12.  https://doi.org/10.1002/jib.404
  10. Hu Xl, Du H, Xu Y. 2015. Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production. Int. J. Food Microbiol. 214: 116-122.  https://doi.org/10.1016/j.ijfoodmicro.2015.07.032
  11. Liu C, Du Y, Zheng J, Qiao Z, Luo H, Zou W. 2022. Production of caproic acid by Rummeliibacillussuwonensis 3B-1 isolated from the pit mud of strong-flavor baijiu. J. Biotechnol. 358: 33-40.  https://doi.org/10.1016/j.jbiotec.2022.08.017
  12. Yuan S, Jin Z, Ali A, Wang C, Liu J. 2022. Caproic acid-producing bacteria in Chinese baijiu brewing. Front. Microbiol. 13: 883142. 
  13. Zou W, Ye G, Zhang K. 2018. Diversity, function, and application of Clostridium in Chinese strong flavor baijiu ecosystem: a review. J. Food Sci. 83: 1193-1199.  https://doi.org/10.1111/1750-3841.14134
  14. Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittmatter A, et al. 2008. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc. Natl. Acad. Sci. USA 105: 2128-2133.  https://doi.org/10.1073/pnas.0711093105
  15. Zhang C, Guo M, Liu J, Ma S, Zhao H, Dong S, et al. 2022. A new method for screening and culture of Clostridium from pit mud under non-anaerobic conditions. J. Microbiol. Methods 200: 106559. 
  16. Y JX, T Z, S WJ, L L, W LJ, B CM, et al. 2022. Effect and mechanism of co-culture with Saccharomycescerevisiae on the metabolism of caproic acid by Clostridium celerecrescens. Food Sci. 43: 121-126. 
  17. B CM, X YX, H GZ, Y JX, L L, Y DX, et al. 2023. Effects of Clostridiumtyrobutyricum on the production of caproic acid by Clostridium celerecrescens and its mechanism during co-culture. Food Sci. 44: 158-164. 
  18. Sun H, Chai LJ, Fang GY, Lu ZM, Zhang XJ, Wang ST, et al. 2022. Metabolite-based mutualistic interaction between two novel Clostridial species from pit mud enhances butyrate and caproate production. Appl. Environ. Microbiol. 88: e0048422. 
  19. Zou W, Zhao C, Luo H. 2018. Diversity and function of microbial community in Chinese strong-flavor baijiu ecosystem: a review. Front. Microbiol. 9: 671. 
  20. Luo H, Li T, Zheng J, Zhang K, Qiao Z, Luo H, et al. 2022. Isolation, identification, and fermentation medium optimization of a caproic acid-producing Enterococcuscasseliflavus strain from pit mud of Chinese strong flavor baijiu ecosystem. Polish J. Microbiol. 71: 563-575.  https://doi.org/10.33073/pjm-2022-052
  21. Q XY, G SB, F JY, Z LF, N ZC, W Z, et al. 2019. Bioinformatics analysis of the key enzymes of the hexanoic acid metabolic pathway in Clostridium kluyveri based on comparative genomics. Food Sci. 40: 122-129. 
  22. Fan S, Zhang Z, Zou W, Huang Z, Liu J, Liu L. 2014. Development of a minimal chemically defined medium for Ketogulonicigenium vulgare WSH001 based on its genome-scale metabolic model. J. Biotechnol. 169: 15-22.  https://doi.org/10.1016/j.jbiotec.2013.10.027
  23. Ortega-Cuadros M, Aligon S, Velasquez N, Verdier J, Grappin P. 2023. Arabidopsis transcriptome dataset of the response of imbibed wild-type and glucosinolate-deficient seeds to nitrogen-containing compounds. Data Brief 48: 109047. 
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043-1055.  https://doi.org/10.1101/gr.186072.114
  25. Blake JD, Cohen FE. 2001. Pairwise sequence alignment below the twilight zone. J. Mol. Biol. 307: 721-735.  https://doi.org/10.1006/jmbi.2001.4495
  26. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.  https://doi.org/10.1093/nar/25.5.955
  27. Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, et al. 2018. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46: D335-d342.  https://doi.org/10.1093/nar/gkx1038
  28. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35: W182-185.  https://doi.org/10.1093/nar/gkm321
  29. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47: D607-D613.  https://doi.org/10.1093/nar/gky1131
  30. Modi A, Raval I, Doshi P, Joshi M, Joshi C, Patel AK. 2023. Heterologous expression of recombinant nattokinase in Escherichia coli BL21(DE3) and media optimization for overproduction of nattokinase using RSM. Protein Expr. Purif. 203: 106198. 
  31. Cavalcante WdA, Leitao RC, Gehring TA, Angenent LT, Santaella ST. 2017. Anaerobic fermentation for n-caproic acid production: a review. Process Biochem. 54: 106-119.  https://doi.org/10.1016/j.procbio.2016.12.024
  32. San-Valero P, Fernandez-Naveira A, Veiga MC, Kennes C. 2019. Influence of electron acceptors on hexanoic acid production by Clostridium kluyveri. J. Environ. Manag. 242: 515-521.  https://doi.org/10.1016/j.jenvman.2019.04.093
  33. J T, C R, Y X. 2019. Identification and functional analysis of the three thiolases from Clostridiumkluyveri. Acta Microbiol. Sinica 59: 79-92. 
  34. Liu M, Xie W, Wan X, Deng T. 2020. Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice. Int. Immunopharmacol. 88: 106862. 
  35. Xu L, Sun X, Wan X, Li K, Jian F, Li W, et al. 2021. Dietary supplementation with Clostridium butyricum improves growth performance of broilers by regulating intestinal microbiota and mucosal epithelial cells. Anim. Nutr. 7: 1105-1114.  https://doi.org/10.1016/j.aninu.2021.01.009
  36. Cassir N, Benamar S, La Scola B. 2016. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin. Microbiol. Infect. 22: 37-45.  https://doi.org/10.1016/j.cmi.2015.10.014
  37. G XS, Q D, N ZX, X LY. 2007. Study on isolation of Clostridium butyricum from pits sludge and its characteristics. Microbiol. China 1047-1051. 
  38. Yan S, Dong D. 2018. Improvement of caproic acid production in a Clostridium kluyveri H068 and Methanogen 166 co-culture fermentation system. AMB Express 8: 175. 
  39. Bulaj G, Kortemme T, Goldenberg DP. 1998. Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37: 8965-8972.  https://doi.org/10.1021/bi973101r
  40. D ZL. 2000. Control of glutamic acid fermentation-biotin ' sub optimum' and ' super optimum'. Bull. Fer. Sci. Technol. 14-16. 
  41. Y Y, L ZZ, L JX, Q DD, Y ZX. 2005. Effects of D-biotin and VB1 factors on the biosynthesis of valine in a valine producer Corynebacterium glutamicum AATV341. J. Food Sci. Biotechnol. 24: 1-5. 
  42. San-Valero P, Abubackar HN, Veiga MC, Kennes C. 2020. Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresour. Technol. 300: 122659. 
  43. Ma H, Yu Z, Wu W, Fu P, Xia C, Shiung Lam S, et al. 2022. Effects of ethanol addition on caproic acid production and rumen microorganism community structure from straw fermentation. Fuel 327: 125142. 
  44. Zhang C, Ling Z, Yang L, Liu Y, Cao T, Sun Y, et al. 2023. Efficient caproate production from ethanol and acetate in open culture system through reinforcement of chain elongation process. J. Clean. Prod. 383: 135394. 
  45. Zhang C, Yang L, Sun L, Baeyens J. 2021. Sequential fermentation of food waste in an integrated system to improve n-caproate production. J. Clean. Prod. 313: 127771. 
  46. Xu Y, Huang H, Lu H, Wu M, Lin M, Zhang C, et al. 2021. Characterization of an Aspergillus niger for efficient fatty acid ethyl ester synthesis in aqueous phase and the molecular mechanism. Front. Microbiol. 12: 820380.