Acknowledgement
This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT, No. 2019R1A2C2002163).
References
- Gaspar RC, Pauli JR, Shulman GI, Munoz VR. 2021. An update on brown adipose tissue biology: a discussion of recent findings. Am. J. Physiol. Endocrinol. Metab. 320: E488-95. https://doi.org/10.1152/ajpendo.00310.2020
- Zhang P, He Y, Wu S. 2022. Factors associated with white fat browning: new regulators of lipid metabolism. Int. J. Mol. Sci. 23: 7641.
- Ruprecht JJ, Kunji ERS.2020. The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem. Sci. 45: 244-258. https://doi.org/10.1016/j.tibs.2019.11.001
- Fedorenko A, Lishko PV, Kirichok Y. 2012. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151: 400-413. https://doi.org/10.1016/j.cell.2012.09.010
- Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, et al. 2017. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23: 1454-1465. https://doi.org/10.1038/nm.4429
- Chang SH, Song NJ, Choi JH, Yun UJ, Park KW. 2019. Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obes. Rev. 20: 241-251. https://doi.org/10.1111/obr.12796
- Fuller-Jackson JP, Henry BA. 2018. Adipose and skeletal muscle thermogenesis: studies from large animals. J. Endocrinol. 237: R99-R115. https://doi.org/10.1530/JOE-18-0090
- Calixto JB. 2019. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 91: e20190105.
- Choi Y, Yu L. 2021. Natural bioactive compounds as potential browning agents in white adipose tissue. Pharm. Res. 38: 549-567. https://doi.org/10.1007/s11095-021-03027-7
- Veeresham C. 2012. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3: 200.
- Lee MK, Lee B, Kim CY. 2021. Natural extracts that stimulate adipocyte browning and their underlying mechanisms. Antioxidants 10: 308.
- Shiao YJ, Su MH, Lin HC, Wu CR. 2017. Echinacoside ameliorates the memory impairment and cholinergic deficit induced by amyloid beta peptides via the inhibition of amyloid deposition and toxicology. Food Funct. 8: 2283-2294. https://doi.org/10.1039/C7FO00267J
- Liu J, Yang L, Dong Y. 2018. Echinacoside, an inestimable natural product in treatment of neurological and other disorders. Molecules 23: 1213.
- Chen C, Xia B, Tang L, Wu W, Tang J, Liang Y, et al. 2019. Echinacoside protects against MPTP/MPP+-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metab. Brain Dis. 34: 203-212. https://doi.org/10.1007/s11011-018-0330-3
- Zhang X, Hao Y. 2020. Beneficial effects of echinacoside on diabetic cardiomyopathy in diabetic Db/Db mice. Drug Des. Devel. Ther. 18: 5575-5587. https://doi.org/10.2147/DDDT.S276972
- Chuang HW, Wang TY, Huang CC, Wei IH. 2022. Echinacoside exhibits antidepressant-like effects through AMPAR-Akt/ERK-mTOR pathway stimulation and BDNF expression in mice. Chin. Med. 17: 9.
- Zhang Y, Wu Q, Zhong L, Wang L, Gong D. 2020. Echinacoside promotes the proliferation of human renal tubular epithelial cells by blocking the HBX/TREM2-mediated NF-κB signalling pathway. Mol. Med. Rep. 22: 1137-1144. https://doi.org/10.3892/mmr.2020.11201
- Jiang Z, Zhou B, Li X, Kirby GM, Zhang X. 2018. Echinacoside increases sperm quantity in rats by targeting the hypothalamic androgen receptor. Sci. Rep. 8: 3839.
- Ni Y, Deng J, Liu X, Li Q, Zhang J, Bai H, et al. 2021. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J. Cell. Mol. Med. 25: 203-216. https://doi.org/10.1111/jcmm.15904
- Jia C, Shi H, Jin W, Zhang K, Jiang Y, Zhao M, et al. 2009. Metabolism of echinacoside, a good antioxidant, in rats: isolation and identification of its biliary metabolites. Drug Metab. Dispos. 37: 431-438. https://doi.org/10.1124/dmd.108.023697
- Shu W, Wang Z, Zhao R, Shi R, Zhang J, Zhang W, et al. 2022. Exploration of the effect and potential mechanism of echinacoside against endometrial cancer based on network pharmacology and in vitro experimental verification. Drug Des. Devel. Ther. 16: 1847-1863. https://doi.org/10.2147/DDDT.S361955
- Ni Y, Zhang J, Zhu W, Duan Y, Bai H, Luan C. 2022. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH/ROS/ER stress. J. Cell. Mol. Med. 26: 5414-5425. https://doi.org/10.1111/jcmm.17564
- Jiang T, Gu H, Wei J. 2022. Echinacoside inhibits osteoclast function by down-regulating PI3K/Akt/C-Fos to alleviate osteolysis caused by periprosthetic joint infection. Front. Pharmacol. 13: 930053.
- Nematalla KM, Ghada SA, Yousef M, Asmai Z. 2011. Effect of echinacea as antioxidant on markers of aging. Aust. J. Basic Appl. Sci. 5: 18-26.
- Kim HR, Oh SK, Lim W. 2014. Immune enhancing effects of Echinacea purpurea root extract by reducing regulatory T cell number and function. Nat. Prod. Commun. 9: 1934578X1400900422.
- Pham HG, Dang TT, Yun JW. 2021. Salvianolic acid B induces browning in 3T3-L1 white adipocytes via activation of β3-AR and ERK signaling pathways. J. Funct. Foods 81: 104475.
- Mukherjee S, Yun JW. 2022. β-Carotene stimulates browning of 3T3-L1 white adipocytes by enhancing thermogenesis via the β3-AR/p38 MAPK/SIRT signaling pathway. Phytomedicine 96: 153857.
- Kim E, Jeon S. 2023. The impact of phytochemicals in obesity-related metabolic diseases: focus on ceramide metabolism. Nutrients 15: 703.
- Wu L, Zhang L, Li B. 2018. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front. Physiol. 9: 122.
- Fullerton MD, Galic S, Marcinko K. 2013. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulinsensitizing effects of metformin. Nat. Med. 19: 1649-1654. https://doi.org/10.1038/nm.3372
- London E, Bloyd M, Stratakis CA. 2020. PKA functions in metabolism and resistance to obesity: lessons from mouse and human studies. J. Endocrinol. 246: R51.
- Ikeda K, Maretich P, Kajimura S. 2018. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29: 191-200. https://doi.org/10.1016/j.tem.2018.01.001
- Shi F, Collins S. 2017. Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Horm. Mol. Biol. Clin. Investig. 31.issue-2/hmbci-2017-0062/hmbci-2017-0062.xml. doi: 10.1515/hmbci-2017-0062.
- Leiva M, Matesanz N, Pulgarin-Alfaro M, Nikolic I, Sabio G. 2020. Uncovering the role of p38 family members in adipose tissue physiology. Front. Endocrinol. 11: 572089.
- Haddish K, Yun JW. 2022. L-dihydroxyphenylalanine (L-Dopa) induces brown-like phenotype in 3T3-L1 white adipocytes via activation of dopaminergic and β3-adrenergic receptors. Biotechnol. Bioproc. Eng. 27: 792-806. https://doi.org/10.1007/s12257-021-0361-1
- Haddish K, Yun JW. 2023a. Dopaminergic and adrenergic receptors synergistically stimulate browning in 3T3-L1 white adipocytes. J. Physiol. Biochem. 79: 117-131.
- Sandoval-Avila S, Diaz NF, Gomez-Pinedo U. 2019. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures. Neurologia 34: 114-124. https://doi.org/10.1016/j.nrl.2016.04.018
- Kempster, P, Ma A. 2022. Parkinson's disease, dopaminergic drugs and the plant world. Front. Pharmacol. 13: 970714.
- Luedtke RR, Freeman RA, Volk M, Arfan M, Reinecke MG. 2003. Pharmacological survey of medicinal plants for activity at dopamine receptor subtypes. II. Screen for binding activity at the D1 and D2 dopamine receptor subtypes. Pharm. Biol. 41: 45-58. https://doi.org/10.1076/phbi.41.1.45.14695
- Popov LD. Mitochondrial biogenesis: an update. 2020. J. Cell. Mol. Med. 24: 4892-4899. https://doi.org/10.1111/jcmm.15194
- Heinonen S, Buzkova J, Muniandy M, Kaksonen R, Ollikainen M, Ismail K, et al. 2015. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes 64: 3135-3145. https://doi.org/10.2337/db14-1937
- Mishra A, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S. 2019. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: a role of Wnt signalling. Neurochem. Int. 129: 104463.
- Kohlie R, Perwitz N, Resch J, Schmid SM, Lehnert H, Klein J, et al. 2017. Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. J. Mol. Endocrinol. 58: 57-66. https://doi.org/10.1530/JME-16-0159
- Chen S, Owens GC, Edelman DB. 2008. Dopamine inhibits mitochondrial motility in hippocampal neurons. PLoS One 3: e2804.
- Haddish K, Yun, JW. 2023b. Dopamine receptor D4 (DRD4) negatively regulates UCP1- and ATP-dependent thermogenesis in 3T3-L1 adipocytes and C2C12 muscle cells. Pflugers Arch. 475: 757-773.
- Haddish K, Yun JW. 2023. Silencing of dopamine receptor D5 inhibits the browning of 3T3-L1 adipocytes and ATP-consuming futile cycles in C2C12 muscle cells. Arch. Physiol. Biochem. 4: 1-13.
- Wallimann T, Tokarska-Schlattner M, Kay L, Schlattner U. 2020. Role of creatine and creatine kinase in UCP1-independent adipocyte thermogenesis. Am. J. Physiol. Endocrinol. Metab. 319: E944-E946. https://doi.org/10.1152/ajpendo.00367.2020
- Ikeda, K, Yamada T. 2020. UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front. Endocrinol. 11: 498.
- Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. 2022. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev. Endocr. Metab. Disord. 23: 121-131. https://doi.org/10.1007/s11154-021-09690-w
- Szanda G, Koncz P, Rajki A, Spat A. 2008. Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake. Cell Calcium 43: 250-259. https://doi.org/10.1016/j.ceca.2007.05.013
- Song Z, Wang Y, Zhang F, Yao F, Sun C. 2019. Calcium signaling pathways: key pathways in the regulation of obesity. Int. J. Mol. Sci. 20: 2768.
- Sander P, Gudermann T, Schredelseker J. 2021. A calcium guard in the outer membrane: is VDAC a regulated gatekeeper of mitochondrial calcium uptake? Int. J. Mol. Sci. 22: 946.
- Lezcano N, Bergson C. 2002. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons. J. Neurophysiol. 87: 2167-2175. https://doi.org/10.1152/jn.00541.2001
- Surmeier DJ. Bargas J, Hemmings HC, Jr, Nairn AC, Greengard P. 1995. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14: 385-397. https://doi.org/10.1016/0896-6273(95)90294-5
- Chaudhuri D, Sancak Y, Mootha VK, Clapham DE. 2013. MCU encodes the pore conducting mitochondrial calcium currents. eLife 2: e00704.