DOI QR코드

DOI QR Code

Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors

  • Kiros Haddish (Department of Biotechnology, Daegu University) ;
  • Jong Won Yun (Department of Biotechnology, Daegu University)
  • Received : 2023.06.23
  • Accepted : 2023.07.06
  • Published : 2023.10.28

Abstract

Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levelswere also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT, No. 2019R1A2C2002163).

References

  1. Gaspar RC, Pauli JR, Shulman GI, Munoz VR. 2021. An update on brown adipose tissue biology: a discussion of recent findings. Am. J. Physiol. Endocrinol. Metab. 320: E488-95. https://doi.org/10.1152/ajpendo.00310.2020
  2. Zhang P, He Y, Wu S. 2022. Factors associated with white fat browning: new regulators of lipid metabolism. Int. J. Mol. Sci. 23: 7641.
  3. Ruprecht JJ, Kunji ERS.2020. The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem. Sci. 45: 244-258. https://doi.org/10.1016/j.tibs.2019.11.001
  4. Fedorenko A, Lishko PV, Kirichok Y. 2012. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151: 400-413. https://doi.org/10.1016/j.cell.2012.09.010
  5. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, et al. 2017. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23: 1454-1465. https://doi.org/10.1038/nm.4429
  6. Chang SH, Song NJ, Choi JH, Yun UJ, Park KW. 2019. Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obes. Rev. 20: 241-251. https://doi.org/10.1111/obr.12796
  7. Fuller-Jackson JP, Henry BA. 2018. Adipose and skeletal muscle thermogenesis: studies from large animals. J. Endocrinol. 237: R99-R115. https://doi.org/10.1530/JOE-18-0090
  8. Calixto JB. 2019. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 91: e20190105.
  9. Choi Y, Yu L. 2021. Natural bioactive compounds as potential browning agents in white adipose tissue. Pharm. Res. 38: 549-567. https://doi.org/10.1007/s11095-021-03027-7
  10. Veeresham C. 2012. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3: 200.
  11. Lee MK, Lee B, Kim CY. 2021. Natural extracts that stimulate adipocyte browning and their underlying mechanisms. Antioxidants 10: 308.
  12. Shiao YJ, Su MH, Lin HC, Wu CR. 2017. Echinacoside ameliorates the memory impairment and cholinergic deficit induced by amyloid beta peptides via the inhibition of amyloid deposition and toxicology. Food Funct. 8: 2283-2294. https://doi.org/10.1039/C7FO00267J
  13. Liu J, Yang L, Dong Y. 2018. Echinacoside, an inestimable natural product in treatment of neurological and other disorders. Molecules 23: 1213.
  14. Chen C, Xia B, Tang L, Wu W, Tang J, Liang Y, et al. 2019. Echinacoside protects against MPTP/MPP+-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metab. Brain Dis. 34: 203-212. https://doi.org/10.1007/s11011-018-0330-3
  15. Zhang X, Hao Y. 2020. Beneficial effects of echinacoside on diabetic cardiomyopathy in diabetic Db/Db mice. Drug Des. Devel. Ther. 18: 5575-5587. https://doi.org/10.2147/DDDT.S276972
  16. Chuang HW, Wang TY, Huang CC, Wei IH. 2022. Echinacoside exhibits antidepressant-like effects through AMPAR-Akt/ERK-mTOR pathway stimulation and BDNF expression in mice. Chin. Med. 17: 9.
  17. Zhang Y, Wu Q, Zhong L, Wang L, Gong D. 2020. Echinacoside promotes the proliferation of human renal tubular epithelial cells by blocking the HBX/TREM2-mediated NF-κB signalling pathway. Mol. Med. Rep. 22: 1137-1144. https://doi.org/10.3892/mmr.2020.11201
  18. Jiang Z, Zhou B, Li X, Kirby GM, Zhang X. 2018. Echinacoside increases sperm quantity in rats by targeting the hypothalamic androgen receptor. Sci. Rep. 8: 3839.
  19. Ni Y, Deng J, Liu X, Li Q, Zhang J, Bai H, et al. 2021. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J. Cell. Mol. Med. 25: 203-216. https://doi.org/10.1111/jcmm.15904
  20. Jia C, Shi H, Jin W, Zhang K, Jiang Y, Zhao M, et al. 2009. Metabolism of echinacoside, a good antioxidant, in rats: isolation and identification of its biliary metabolites. Drug Metab. Dispos. 37: 431-438. https://doi.org/10.1124/dmd.108.023697
  21. Shu W, Wang Z, Zhao R, Shi R, Zhang J, Zhang W, et al. 2022. Exploration of the effect and potential mechanism of echinacoside against endometrial cancer based on network pharmacology and in vitro experimental verification. Drug Des. Devel. Ther. 16: 1847-1863. https://doi.org/10.2147/DDDT.S361955
  22. Ni Y, Zhang J, Zhu W, Duan Y, Bai H, Luan C. 2022. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH/ROS/ER stress. J. Cell. Mol. Med. 26: 5414-5425. https://doi.org/10.1111/jcmm.17564
  23. Jiang T, Gu H, Wei J. 2022. Echinacoside inhibits osteoclast function by down-regulating PI3K/Akt/C-Fos to alleviate osteolysis caused by periprosthetic joint infection. Front. Pharmacol. 13: 930053.
  24. Nematalla KM, Ghada SA, Yousef M, Asmai Z. 2011. Effect of echinacea as antioxidant on markers of aging. Aust. J. Basic Appl. Sci. 5: 18-26.
  25. Kim HR, Oh SK, Lim W. 2014. Immune enhancing effects of Echinacea purpurea root extract by reducing regulatory T cell number and function. Nat. Prod. Commun. 9: 1934578X1400900422.
  26. Pham HG, Dang TT, Yun JW. 2021. Salvianolic acid B induces browning in 3T3-L1 white adipocytes via activation of β3-AR and ERK signaling pathways. J. Funct. Foods 81: 104475.
  27. Mukherjee S, Yun JW. 2022. β-Carotene stimulates browning of 3T3-L1 white adipocytes by enhancing thermogenesis via the β3-AR/p38 MAPK/SIRT signaling pathway. Phytomedicine 96: 153857.
  28. Kim E, Jeon S. 2023. The impact of phytochemicals in obesity-related metabolic diseases: focus on ceramide metabolism. Nutrients 15: 703.
  29. Wu L, Zhang L, Li B. 2018. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front. Physiol. 9: 122.
  30. Fullerton MD, Galic S, Marcinko K. 2013. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulinsensitizing effects of metformin. Nat. Med. 19: 1649-1654. https://doi.org/10.1038/nm.3372
  31. London E, Bloyd M, Stratakis CA. 2020. PKA functions in metabolism and resistance to obesity: lessons from mouse and human studies. J. Endocrinol. 246: R51.
  32. Ikeda K, Maretich P, Kajimura S. 2018. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29: 191-200. https://doi.org/10.1016/j.tem.2018.01.001
  33. Shi F, Collins S. 2017. Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Horm. Mol. Biol. Clin. Investig. 31.issue-2/hmbci-2017-0062/hmbci-2017-0062.xml. doi: 10.1515/hmbci-2017-0062.
  34. Leiva M, Matesanz N, Pulgarin-Alfaro M, Nikolic I, Sabio G. 2020. Uncovering the role of p38 family members in adipose tissue physiology. Front. Endocrinol. 11: 572089.
  35. Haddish K, Yun JW. 2022. L-dihydroxyphenylalanine (L-Dopa) induces brown-like phenotype in 3T3-L1 white adipocytes via activation of dopaminergic and β3-adrenergic receptors. Biotechnol. Bioproc. Eng. 27: 792-806. https://doi.org/10.1007/s12257-021-0361-1
  36. Haddish K, Yun JW. 2023a. Dopaminergic and adrenergic receptors synergistically stimulate browning in 3T3-L1 white adipocytes. J. Physiol. Biochem. 79: 117-131.
  37. Sandoval-Avila S, Diaz NF, Gomez-Pinedo U. 2019. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures. Neurologia 34: 114-124. https://doi.org/10.1016/j.nrl.2016.04.018
  38. Kempster, P, Ma A. 2022. Parkinson's disease, dopaminergic drugs and the plant world. Front. Pharmacol. 13: 970714.
  39. Luedtke RR, Freeman RA, Volk M, Arfan M, Reinecke MG. 2003. Pharmacological survey of medicinal plants for activity at dopamine receptor subtypes. II. Screen for binding activity at the D1 and D2 dopamine receptor subtypes. Pharm. Biol. 41: 45-58. https://doi.org/10.1076/phbi.41.1.45.14695
  40. Popov LD. Mitochondrial biogenesis: an update. 2020. J. Cell. Mol. Med. 24: 4892-4899. https://doi.org/10.1111/jcmm.15194
  41. Heinonen S, Buzkova J, Muniandy M, Kaksonen R, Ollikainen M, Ismail K, et al. 2015. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes 64: 3135-3145. https://doi.org/10.2337/db14-1937
  42. Mishra A, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S. 2019. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: a role of Wnt signalling. Neurochem. Int. 129: 104463.
  43. Kohlie R, Perwitz N, Resch J, Schmid SM, Lehnert H, Klein J, et al. 2017. Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. J. Mol. Endocrinol. 58: 57-66. https://doi.org/10.1530/JME-16-0159
  44. Chen S, Owens GC, Edelman DB. 2008. Dopamine inhibits mitochondrial motility in hippocampal neurons. PLoS One 3: e2804.
  45. Haddish K, Yun, JW. 2023b. Dopamine receptor D4 (DRD4) negatively regulates UCP1- and ATP-dependent thermogenesis in 3T3-L1 adipocytes and C2C12 muscle cells. Pflugers Arch. 475: 757-773.
  46. Haddish K, Yun JW. 2023. Silencing of dopamine receptor D5 inhibits the browning of 3T3-L1 adipocytes and ATP-consuming futile cycles in C2C12 muscle cells. Arch. Physiol. Biochem. 4: 1-13.
  47. Wallimann T, Tokarska-Schlattner M, Kay L, Schlattner U. 2020. Role of creatine and creatine kinase in UCP1-independent adipocyte thermogenesis. Am. J. Physiol. Endocrinol. Metab. 319: E944-E946. https://doi.org/10.1152/ajpendo.00367.2020
  48. Ikeda, K, Yamada T. 2020. UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front. Endocrinol. 11: 498.
  49. Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. 2022. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev. Endocr. Metab. Disord. 23: 121-131. https://doi.org/10.1007/s11154-021-09690-w
  50. Szanda G, Koncz P, Rajki A, Spat A. 2008. Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake. Cell Calcium 43: 250-259. https://doi.org/10.1016/j.ceca.2007.05.013
  51. Song Z, Wang Y, Zhang F, Yao F, Sun C. 2019. Calcium signaling pathways: key pathways in the regulation of obesity. Int. J. Mol. Sci. 20: 2768.
  52. Sander P, Gudermann T, Schredelseker J. 2021. A calcium guard in the outer membrane: is VDAC a regulated gatekeeper of mitochondrial calcium uptake? Int. J. Mol. Sci. 22: 946.
  53. Lezcano N, Bergson C. 2002. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons. J. Neurophysiol. 87: 2167-2175. https://doi.org/10.1152/jn.00541.2001
  54. Surmeier DJ. Bargas J, Hemmings HC, Jr, Nairn AC, Greengard P. 1995. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14: 385-397. https://doi.org/10.1016/0896-6273(95)90294-5
  55. Chaudhuri D, Sancak Y, Mootha VK, Clapham DE. 2013. MCU encodes the pore conducting mitochondrial calcium currents. eLife 2: e00704.