DOI QR코드

DOI QR Code

Genetically Encoded Biosensor Engineering for Application in Directed Evolution

  • Yin Mao (National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University) ;
  • Chao Huang (National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University) ;
  • Xuan Zhou (National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University) ;
  • Runhua Han (McKetta Department of Chemical Engineering, The University of Texas at Austin) ;
  • Yu Deng (National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University) ;
  • Shenghu Zhou (National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University)
  • Received : 2023.04.20
  • Accepted : 2023.06.06
  • Published : 2023.10.28

Abstract

Although rational genetic engineering is nowadays the favored method for microbial strain improvement, building up mutant libraries based on directed evolution for improvement is still in many cases the better option. In this regard, the demand for precise and efficient screening methods for mutants with high performance has stimulated the development of biosensor-based high-throughput screening strategies. Genetically encoded biosensors provide powerful tools to couple the desired phenotype to a detectable signal, such as fluorescence and growth rate. Herein, we review recent advances in engineering several classes of biosensors and their applications in directed evolution. Furthermore, we compare and discuss the screening advantages and limitations of two-component biosensors, transcription-factor-based biosensors, and RNA-based biosensors. Engineering these biosensors has focused mainly on modifying the expression level or structure of the biosensor components to optimize the dynamic range, specificity, and detection range. Finally, the applications of biosensors in the evolution of proteins, metabolic pathways, and genome-scale metabolic networks are described. This review provides potential guidance in the design of biosensors and their applications in improving the bioproduction of microbial cell factories through directed evolution.

Keywords

Acknowledgement

This work was supported by the National Key R&D Program of China (2019YFA0905500), the Key R&D Project of Jiangsu Province (Modern Agriculture) (BE2022322), the Distinguished Young Scholars of Jiangsu Province (BK20220089), and the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-015).

References

  1. Zhou S, Alper HS. 2019. Strategies for directed and adapted evolution as part of microbial strain engineering. J. Chem. Technol. Biotechnol. 94: 366-376.  https://doi.org/10.1002/jctb.5746
  2. Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE, et al. 2020. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem. Soc. Rev. 49: 4615-4636.  https://doi.org/10.1039/D0CS00155D
  3. Tobin MB, Gustafsson C, Huisman GW. 2000. Directed evolution: the 'rational' basis for 'irrational' design. Curr. Opin. Struct. Biol. 10: 421-427.  https://doi.org/10.1016/S0959-440X(00)00109-3
  4. Packer MS, Liu DR. 2015. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16: 379-394.  https://doi.org/10.1038/nrg3927
  5. Hughes RA, Ellington AD. 2017. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect. Biol. 9: a023812. 
  6. Rogers JK, Church GM. 2016. Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. USA 113: 2388-2393.  https://doi.org/10.1073/pnas.1600375113
  7. Dressler OJ, Solvas XCI, deMello AJ. 2017. Chemical and biological dynamics using droplet-based microfluidics. Ann. Rev. Anal. Chem. 10: 1-24.  https://doi.org/10.1146/annurev-anchem-061516-045219
  8. Turner AP. 2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42: 3184-3196.  https://doi.org/10.1039/c3cs35528d
  9. Yu W, Xu X, Jin K, Liu Y, Li J, Du G, et al. 2023. Genetically encoded biosensors for microbial synthetic biology: from conceptual frameworks to practical applications. Biotechnol. Adv. 62: 108077. 
  10. Zhou S, Alper HS, Zhou J, Deng Y. 2022. Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Crit. Rev. Biotechnol. 43: 646-663.  https://doi.org/10.1080/07388551.2022.2040415
  11. Sarnaik A, Liu A, Nielsen D, Varman AM. 2020. High-throughput screening for efficient microbial biotechnology. Curr. Opin. Biotechnol. 64: 141-150.  https://doi.org/10.1016/j.copbio.2020.02.019
  12. Cheng F, Tang XL, Kardashliev T. 2018. Transcription factor-based biosensors in high-throughput screening: advances and applications. Biotechnol. J. 13: 1700648. 
  13. Lim HG, Jang S, Jang S, Seo SW, Jung GY. 2018. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals. Curr. Opin. Biotechnol. 54: 18-25.  https://doi.org/10.1016/j.copbio.2018.01.011
  14. Buschiazzo A, Trajtenberg F. 2019. Two-component sensing and regulation: how do histidine kinases talk with response regulators at the molecular level? Annu. Rev. Microbiol. 73: 507-528.  https://doi.org/10.1146/annurev-micro-091018-054627
  15. Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R. 2018. Structural insights into the signalling mechanisms of two-component systems. Nat. Rev. Microbiol. 16: 585-593.  https://doi.org/10.1038/s41579-018-0055-7
  16. Alvarez AF, Georgellis D. 2022. The role of sensory kinase proteins in two-component signal transduction. Biochem. Soc. Trans. 50: 1859-1873.  https://doi.org/10.1042/BST20220848
  17. Cheung J, Hendrickson WA. 2010. Sensor domains of two-component regulatory systems. Curr. Opin. Microbiol. 13: 116-123.  https://doi.org/10.1016/j.mib.2010.01.016
  18. Peruzzi JA, Galvez NR, Kamat N. 2022. Engineering transmembrane signal transduction in synthetic membranes using two-component systems. Proc. Natl. Acad. Sci. USA 130: e2218610120. 
  19. Snoek T, Chaberski EK, Ambri F, Kol S, Bjorn SP, Pang B, et al. 2020. Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Res. 48: e3. 
  20. Ma S, Luo S, Wu L, Liang Z, Wu JR. 2017. Re-engineering the two-component systems as light-regulated in Escherichia coli. J. Biosci. 42: 565-573.  https://doi.org/10.1007/s12038-017-9711-8
  21. Luu RA, Schomer RA, Brunton CN, Truong R, Ta AP, Tan WA, et al. 2019. Hybrid two-component sensors for identification of bacterial chemoreceptor function. Appl. Environ. Microbiol. 85: e01626-01619. 
  22. Ganesh I, Vidhya S, Eom GT, Hong SH. 2017. Construction of methanol-sensing Escherichia coli by the introduction of a Paracoccus denitrificans MxaY-based chimeric two-component system. J. Microbiol. Biotechnol. 27: 1106-1111.  https://doi.org/10.4014/jmb.1611.11070
  23. Selvamani V, Maruthamuthu MK, Arulsamy K, Eom GT, Hong SH. 2017. Construction of methanol sensing Escherichia coli by the introduction of novel chimeric MxcQZ/OmpR two-component system from Methylobacterium organophilum XX. Korean J. Chem. Eng. 34: 1734-1739.  https://doi.org/10.1007/s11814-017-0063-8
  24. Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, Goulian M, et al. 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133: 1043-1054.  https://doi.org/10.1016/j.cell.2008.04.040
  25. Lazar JT, Tabor JJ. 2021. Bacterial two-component systems as sensors for synthetic biology applications. Curr. Opin. Syst. Biol. 28: 100398. 
  26. Schmidl SR, Ekness F, Sofjan K, Daeffler KNM, Brink KR, Landry BP, et al. 2019. Rewiring bacterial two-component systems by modular DNA-binding domain swapping. Nat. Chem. Biol. 15: 690-698.  https://doi.org/10.1038/s41589-019-0286-6
  27. Landry BP, Palanki R, Dyulgyarov N, Hartsough LA, Tabor JJ. 2018. Phosphatase activity tunes two-component system sensor detection threshold. Nat. Commun. 9: 1433. 
  28. Yang H, Yang X, Lu Y, Shu Q, Zhou S, Deng Y. 2022. Engineering a fumaric acid-responsive two-component biosensor for dynamic range improvement in Escherichia coli. Syst. Microbiol. Biomanufact. 2: 533-541.  https://doi.org/10.1007/s43393-022-00082-y
  29. Zhang J, Jensen MK, Keasling JD. 2015. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28: 1-8.  https://doi.org/10.1016/j.cbpa.2015.05.013
  30. Pu J, Zinkus-Boltz J, Dickinson BC. 2017. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat. Chem. Biol. 13: 432-438.  https://doi.org/10.1038/nchembio.2299
  31. Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, et al. 2012. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13: R40. 
  32. Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. 2012. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab. Eng. 14: 449-457.  https://doi.org/10.1016/j.ymben.2012.02.002
  33. Rogers JK, Guzman CD, Taylor ND, Raman S, Anderson K, Church GM. 2015. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res. 43: 7648-7660.  https://doi.org/10.1093/nar/gkv616
  34. Dietrich JA, Shis DL, Alikhani A, Keasling JD. 2013. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth. Biol. 2: 47-58.  https://doi.org/10.1021/sb300091d
  35. Yeom SJ, Kim M, Kwon KK, Fu Y, Rha E, Park SH, et al. 2018. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9: 5053. 
  36. Chen XF, Xia XX, Lee SY, Qian ZG. 2018. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Biotechnol. Bioeng. 115: 1014-1027.  https://doi.org/10.1002/bit.26521
  37. Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Drager A, Chen K, et al. 2018. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res. 46: 10682-10696.  https://doi.org/10.1093/nar/gky752
  38. Li L, Tu R, Song G, Cheng J, Chen W, Li L, et al. 2019. Development of a synthetic 3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening. ACS Synth. Biol. 8: 297-306.  https://doi.org/10.1021/acssynbio.8b00317
  39. Chou HH, Keasling JD. 2013. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 4: 2595. 
  40. L FMM, Currin A, Dixon N. 2019. Directed evolution of the PcaV allosteric transcription factor to generate a biosensor for aromatic aldehydes. J. Biol. Eng. 13: 91. 
  41. Ding N, Zhou S, Deng Y. 2021. Transcription-factor-based biosensor engineering for applications in synthetic biology. ACS Synth. Biol. 10: 911-922.  https://doi.org/10.1021/acssynbio.0c00252
  42. Li JW, Zhang XY, Wu H, Bai YP. 2020. Transcription factor engineering for high-throughput strain evolution and organic acid bioproduction: a review. Front. Bioeng. Biotechnol. 8: 98. 
  43. Thompson MG, Pearson AN, Barajas JF, Cruz-Morales P, Sedaghatian N, Costello Z, et al. 2020. Identification, characterization, and application of a highly sensitive lactam biosensor from Pseudomonas putida. ACS Synth. Biol. 9: 53-62.  https://doi.org/10.1021/acssynbio.9b00292
  44. Chen Y, Ho JM, Shis DL, Gupta C, Long J, Wagner DS, et al. 2018. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Na.t Commun. 9: 64. 
  45. Siedler S, Khatri NK, Zsohar A, Kjaerbolling I, Vogt M, Hammar P, et al. 2017. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth. Biol. 6: 1860-1869.  https://doi.org/10.1021/acssynbio.7b00009
  46. Ding N, Yuan Z, Zhang X, Chen J, Zhou S, Deng Y. 2020. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. Nucleic Acids Res. 48: 10602-10613.  https://doi.org/10.1093/nar/gkaa786
  47. Zhou Y, Yuan Y, Wu Y, Li L, Jameel A, Xing XH, et al. 2022. Encoding genetic circuits with DNA barcodes paves the way for machine learning-assisted metabolite biosensor response curve profiling in Yeast. ACS Synth. Biol. 11: 977-989.  https://doi.org/10.1021/acssynbio.1c00595
  48. Lin JL, Wagner JM, Alper HS. 2017. Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol. Adv. 35: 950-970.  https://doi.org/10.1016/j.biotechadv.2017.07.005
  49. Ogawa A. 2018. Rational design of artificial riboswitches, pp. 79-93. Applied RNA Bioscience, Ed. Springer, 
  50. Jang S, Jang S, Xiu Y, Kang TJ, Lee S-H, Koffas MA, et al. 2017. Development of artificial riboswitches for monitoring of naringenin in vivo. ACS Synth. Biol. 6: 2077-2085.  https://doi.org/10.1021/acssynbio.7b00128
  51. Xiu Y, Jang S, Jones JA, Zill NA, Linhardt RJ, Yuan Q, et al. 2017. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnol. Bioeng. 114: 2235-2244.  https://doi.org/10.1002/bit.26340
  52. Porter EB, Polaski JT, Morck MM, Batey RT. 2017. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat. Chem. Biol. 13: 295-301.  https://doi.org/10.1038/nchembio.2278
  53. Pang Q, Han H, Liu X, Wang Z, Liang Q, Hou J, et al. 2020. In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production. Metab. Eng. 59: 36-43.  https://doi.org/10.1016/j.ymben.2020.01.002
  54. Yang P, Wang J, Pang Q, Zhang F, Wang J, Wang Q, et al. 2017. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Metab. Eng. 43: 21-28.  https://doi.org/10.1016/j.ymben.2017.08.001
  55. Mohsen MG, Midy MK, Balaji A, Breaker RR. 2023. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Res. 51: 966-981. 
  56. Harbaugh SV, Silverman AD, Chushak YG, Zimlich K, Wolfe M, Thavarajah W, et al. 2022. Engineering a synthetic dopamine-responsive riboswitch for in vitro biosensing. ACS Synth. Biol. 11: 2275-2283.  https://doi.org/10.1021/acssynbio.1c00560
  57. Zeng W, Guo L, Xu S, Chen J, Zhou J. 2020. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 38: 888-906.  https://doi.org/10.1016/j.tibtech.2020.01.001
  58. Zhou S, Liu P, Chen J, Du G, Li H, Zhou J. 2016. Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 100: 10443-10452.  https://doi.org/10.1007/s00253-016-7672-8
  59. Xiong D, Lu S, Wu J, Liang C, Wang W, Wang W, et al. 2017. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metab. Eng. 40: 115-123.  https://doi.org/10.1016/j.ymben.2017.01.006
  60. Leavitt JM, Wagner JM, Tu CC, Tong A, Liu YY, Alper HS. 2017. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J. 12: 1600687. 
  61. Morrison MS, Wang T, Raguram A, Hemez C, Liu DR. 2021. Disulfide-compatible phage-assisted continuous evolution in the periplasmic space. Nat. Commun. 12: 5959. 
  62. McLure RJ, Radford SE, Brockwell DJ. 2022. High-throughput directed evolution: a golden era for protein science. Trends Chem. 4: 378-391.  https://doi.org/10.1016/j.trechm.2022.02.004
  63. Wu J, Jiang P, Chen W, Xiong D, Huang L, Jia J, et al. 2017. Design and application of a lactulose biosensor. Sci. Rep. 7: 45994. 
  64. Wang M, Li S, Zhao H. 2016. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnol. Bioeng. 113: 206-215.  https://doi.org/10.1002/bit.25676
  65. Michener JK, Smolke CD. 2012. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab. Eng. 14: 306-316.  https://doi.org/10.1016/j.ymben.2012.04.004
  66. Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. 2021. Directed evolution: methodologies and applications. Chem. Rev. 121: 12384-12444.  https://doi.org/10.1021/acs.chemrev.1c00260
  67. Zhou S, Lyu Y, Li H, Koffas MA, Zhou J. 2019. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy. Biotechnol. Bioeng. 116: 1392-1404.  https://doi.org/10.1002/bit.26941
  68. Teng Y, Zhang J, Jiang T, Zou Y, Gong X, Yan Y. 2022. Biosensor-enabled pathway optimization in metabolic engineering. Curr. Opin. Biotechnol. 75: 102696. 
  69. Liu Y, Zhuang Y, Ding D, Xu Y, Sun J, Zhang D. 2017. Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synth. Biol. 6: 837-848.  https://doi.org/10.1021/acssynbio.6b00328
  70. Xu S, Zhang L, Zhou S, Deng Y. 2021. Biosensor-based multi-gene pathway optimization for enhancing the production of glycolate. Appl. Environ. Microbiol. 87: e0011321. 
  71. Van Brempt M, Peeters AI, Duchi D, De Wannemaeker L, Maertens J, De Paepe B, et al. 2022. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway. Microb. Cell Fact. 21: 49. 
  72. Zhu Z, Zhang J, Ji X, Fang Z, Wu Z, Chen J, et al. 2018. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 102: 4615-4627.  https://doi.org/10.1007/s00253-018-8937-1
  73. Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, et al. 2016. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J. Ind. Microbiol. Biotechnol. 43: 1227-1235.  https://doi.org/10.1007/s10295-016-1803-1
  74. Cai Y, Xia M, Dong H, Qian Y, Zhang T, Zhu B, et al. 2018. Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti. BMC Biotechnol. 18: 27. 
  75. Qiu C, Huang M, Hou Y, Tao H, Zhao J, Shen Y, et al. 2022. Biosensor-coupled In Vivo mutagenesis and omics analysis reveals reduced lysine and arginine synthesis to improve malonyl-coenzyme a flux in Saccharomyces cerevisiae. mSystems 7: e01366-01321. 
  76. Qiu X, Xu P, Zhao X, Du G, Zhang J, Li J. 2020. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metab. Eng. 60: 66-76.  https://doi.org/10.1016/j.ymben.2020.03.006
  77. d'Oelsnitz S, Ellington A. 2018. Continuous directed evolution for strain and protein engineering. Curr. Opin. Biotechnol. 53: 158-163.  https://doi.org/10.1016/j.copbio.2017.12.020
  78. Luan GD, Bao GH, Lin Z, Li Y, Chen ZG, Li Y, et al. 2015. Comparative genome analysis of a thermotolerant Escherichia coli obtained by genome replication engineering assisted continuous evolution (GREACE) and its parent strain provides new understanding of microbial heat tolerance. New Biotechnol. 32: 732-738.  https://doi.org/10.1016/j.nbt.2015.01.013
  79. Raman S, Rogers JK, Taylor ND, Church GM. 2014. Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111: 17803-17808.  https://doi.org/10.1073/pnas.1409523111
  80. Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H. 2017. Automated multiplex genome-scale engineering in yeast. Nat. Commun. 8: 15187. 
  81. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 3: 1231143. 
  82. Hess GT, Fresard L, Han K, Lee CH, Li A, Cimprich KA, et al. 2016. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13: 1036. 
  83. Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, et al. 2017. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35: 48. 
  84. Liang L, Liu R, Garst AD, Lee T, Beckham GT, Gill RT. 2017. CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab. Eng. 41: 1-10.  https://doi.org/10.1016/j.ymben.2017.02.009
  85. Raman S, Rogers JK, Taylor ND, Church GM. 2014. Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. 111: 17803-17808.  https://doi.org/10.1073/pnas.1409523111
  86. DeVito JA. 2007. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res. 36: e4.