Acknowledgement
This work was supported by the National Key R&D Program of China (2019YFA0905500), the Key R&D Project of Jiangsu Province (Modern Agriculture) (BE2022322), the Distinguished Young Scholars of Jiangsu Province (BK20220089), and the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-015).
References
- Zhou S, Alper HS. 2019. Strategies for directed and adapted evolution as part of microbial strain engineering. J. Chem. Technol. Biotechnol. 94: 366-376. https://doi.org/10.1002/jctb.5746
- Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE, et al. 2020. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem. Soc. Rev. 49: 4615-4636. https://doi.org/10.1039/D0CS00155D
- Tobin MB, Gustafsson C, Huisman GW. 2000. Directed evolution: the 'rational' basis for 'irrational' design. Curr. Opin. Struct. Biol. 10: 421-427. https://doi.org/10.1016/S0959-440X(00)00109-3
- Packer MS, Liu DR. 2015. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16: 379-394. https://doi.org/10.1038/nrg3927
- Hughes RA, Ellington AD. 2017. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect. Biol. 9: a023812.
- Rogers JK, Church GM. 2016. Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. USA 113: 2388-2393. https://doi.org/10.1073/pnas.1600375113
- Dressler OJ, Solvas XCI, deMello AJ. 2017. Chemical and biological dynamics using droplet-based microfluidics. Ann. Rev. Anal. Chem. 10: 1-24. https://doi.org/10.1146/annurev-anchem-061516-045219
- Turner AP. 2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42: 3184-3196. https://doi.org/10.1039/c3cs35528d
- Yu W, Xu X, Jin K, Liu Y, Li J, Du G, et al. 2023. Genetically encoded biosensors for microbial synthetic biology: from conceptual frameworks to practical applications. Biotechnol. Adv. 62: 108077.
- Zhou S, Alper HS, Zhou J, Deng Y. 2022. Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Crit. Rev. Biotechnol. 43: 646-663. https://doi.org/10.1080/07388551.2022.2040415
- Sarnaik A, Liu A, Nielsen D, Varman AM. 2020. High-throughput screening for efficient microbial biotechnology. Curr. Opin. Biotechnol. 64: 141-150. https://doi.org/10.1016/j.copbio.2020.02.019
- Cheng F, Tang XL, Kardashliev T. 2018. Transcription factor-based biosensors in high-throughput screening: advances and applications. Biotechnol. J. 13: 1700648.
- Lim HG, Jang S, Jang S, Seo SW, Jung GY. 2018. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals. Curr. Opin. Biotechnol. 54: 18-25. https://doi.org/10.1016/j.copbio.2018.01.011
- Buschiazzo A, Trajtenberg F. 2019. Two-component sensing and regulation: how do histidine kinases talk with response regulators at the molecular level? Annu. Rev. Microbiol. 73: 507-528. https://doi.org/10.1146/annurev-micro-091018-054627
- Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R. 2018. Structural insights into the signalling mechanisms of two-component systems. Nat. Rev. Microbiol. 16: 585-593. https://doi.org/10.1038/s41579-018-0055-7
- Alvarez AF, Georgellis D. 2022. The role of sensory kinase proteins in two-component signal transduction. Biochem. Soc. Trans. 50: 1859-1873. https://doi.org/10.1042/BST20220848
- Cheung J, Hendrickson WA. 2010. Sensor domains of two-component regulatory systems. Curr. Opin. Microbiol. 13: 116-123. https://doi.org/10.1016/j.mib.2010.01.016
- Peruzzi JA, Galvez NR, Kamat N. 2022. Engineering transmembrane signal transduction in synthetic membranes using two-component systems. Proc. Natl. Acad. Sci. USA 130: e2218610120.
- Snoek T, Chaberski EK, Ambri F, Kol S, Bjorn SP, Pang B, et al. 2020. Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Res. 48: e3.
- Ma S, Luo S, Wu L, Liang Z, Wu JR. 2017. Re-engineering the two-component systems as light-regulated in Escherichia coli. J. Biosci. 42: 565-573. https://doi.org/10.1007/s12038-017-9711-8
- Luu RA, Schomer RA, Brunton CN, Truong R, Ta AP, Tan WA, et al. 2019. Hybrid two-component sensors for identification of bacterial chemoreceptor function. Appl. Environ. Microbiol. 85: e01626-01619.
- Ganesh I, Vidhya S, Eom GT, Hong SH. 2017. Construction of methanol-sensing Escherichia coli by the introduction of a Paracoccus denitrificans MxaY-based chimeric two-component system. J. Microbiol. Biotechnol. 27: 1106-1111. https://doi.org/10.4014/jmb.1611.11070
- Selvamani V, Maruthamuthu MK, Arulsamy K, Eom GT, Hong SH. 2017. Construction of methanol sensing Escherichia coli by the introduction of novel chimeric MxcQZ/OmpR two-component system from Methylobacterium organophilum XX. Korean J. Chem. Eng. 34: 1734-1739. https://doi.org/10.1007/s11814-017-0063-8
- Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, Goulian M, et al. 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133: 1043-1054. https://doi.org/10.1016/j.cell.2008.04.040
- Lazar JT, Tabor JJ. 2021. Bacterial two-component systems as sensors for synthetic biology applications. Curr. Opin. Syst. Biol. 28: 100398.
- Schmidl SR, Ekness F, Sofjan K, Daeffler KNM, Brink KR, Landry BP, et al. 2019. Rewiring bacterial two-component systems by modular DNA-binding domain swapping. Nat. Chem. Biol. 15: 690-698. https://doi.org/10.1038/s41589-019-0286-6
- Landry BP, Palanki R, Dyulgyarov N, Hartsough LA, Tabor JJ. 2018. Phosphatase activity tunes two-component system sensor detection threshold. Nat. Commun. 9: 1433.
- Yang H, Yang X, Lu Y, Shu Q, Zhou S, Deng Y. 2022. Engineering a fumaric acid-responsive two-component biosensor for dynamic range improvement in Escherichia coli. Syst. Microbiol. Biomanufact. 2: 533-541. https://doi.org/10.1007/s43393-022-00082-y
- Zhang J, Jensen MK, Keasling JD. 2015. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28: 1-8. https://doi.org/10.1016/j.cbpa.2015.05.013
- Pu J, Zinkus-Boltz J, Dickinson BC. 2017. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat. Chem. Biol. 13: 432-438. https://doi.org/10.1038/nchembio.2299
- Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, et al. 2012. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13: R40.
- Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. 2012. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab. Eng. 14: 449-457. https://doi.org/10.1016/j.ymben.2012.02.002
- Rogers JK, Guzman CD, Taylor ND, Raman S, Anderson K, Church GM. 2015. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res. 43: 7648-7660. https://doi.org/10.1093/nar/gkv616
- Dietrich JA, Shis DL, Alikhani A, Keasling JD. 2013. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth. Biol. 2: 47-58. https://doi.org/10.1021/sb300091d
- Yeom SJ, Kim M, Kwon KK, Fu Y, Rha E, Park SH, et al. 2018. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9: 5053.
- Chen XF, Xia XX, Lee SY, Qian ZG. 2018. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Biotechnol. Bioeng. 115: 1014-1027. https://doi.org/10.1002/bit.26521
- Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Drager A, Chen K, et al. 2018. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res. 46: 10682-10696. https://doi.org/10.1093/nar/gky752
- Li L, Tu R, Song G, Cheng J, Chen W, Li L, et al. 2019. Development of a synthetic 3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening. ACS Synth. Biol. 8: 297-306. https://doi.org/10.1021/acssynbio.8b00317
- Chou HH, Keasling JD. 2013. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 4: 2595.
- L FMM, Currin A, Dixon N. 2019. Directed evolution of the PcaV allosteric transcription factor to generate a biosensor for aromatic aldehydes. J. Biol. Eng. 13: 91.
- Ding N, Zhou S, Deng Y. 2021. Transcription-factor-based biosensor engineering for applications in synthetic biology. ACS Synth. Biol. 10: 911-922. https://doi.org/10.1021/acssynbio.0c00252
- Li JW, Zhang XY, Wu H, Bai YP. 2020. Transcription factor engineering for high-throughput strain evolution and organic acid bioproduction: a review. Front. Bioeng. Biotechnol. 8: 98.
- Thompson MG, Pearson AN, Barajas JF, Cruz-Morales P, Sedaghatian N, Costello Z, et al. 2020. Identification, characterization, and application of a highly sensitive lactam biosensor from Pseudomonas putida. ACS Synth. Biol. 9: 53-62. https://doi.org/10.1021/acssynbio.9b00292
- Chen Y, Ho JM, Shis DL, Gupta C, Long J, Wagner DS, et al. 2018. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Na.t Commun. 9: 64.
- Siedler S, Khatri NK, Zsohar A, Kjaerbolling I, Vogt M, Hammar P, et al. 2017. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth. Biol. 6: 1860-1869. https://doi.org/10.1021/acssynbio.7b00009
- Ding N, Yuan Z, Zhang X, Chen J, Zhou S, Deng Y. 2020. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. Nucleic Acids Res. 48: 10602-10613. https://doi.org/10.1093/nar/gkaa786
- Zhou Y, Yuan Y, Wu Y, Li L, Jameel A, Xing XH, et al. 2022. Encoding genetic circuits with DNA barcodes paves the way for machine learning-assisted metabolite biosensor response curve profiling in Yeast. ACS Synth. Biol. 11: 977-989. https://doi.org/10.1021/acssynbio.1c00595
- Lin JL, Wagner JM, Alper HS. 2017. Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol. Adv. 35: 950-970. https://doi.org/10.1016/j.biotechadv.2017.07.005
- Ogawa A. 2018. Rational design of artificial riboswitches, pp. 79-93. Applied RNA Bioscience, Ed. Springer,
- Jang S, Jang S, Xiu Y, Kang TJ, Lee S-H, Koffas MA, et al. 2017. Development of artificial riboswitches for monitoring of naringenin in vivo. ACS Synth. Biol. 6: 2077-2085. https://doi.org/10.1021/acssynbio.7b00128
- Xiu Y, Jang S, Jones JA, Zill NA, Linhardt RJ, Yuan Q, et al. 2017. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnol. Bioeng. 114: 2235-2244. https://doi.org/10.1002/bit.26340
- Porter EB, Polaski JT, Morck MM, Batey RT. 2017. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat. Chem. Biol. 13: 295-301. https://doi.org/10.1038/nchembio.2278
- Pang Q, Han H, Liu X, Wang Z, Liang Q, Hou J, et al. 2020. In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production. Metab. Eng. 59: 36-43. https://doi.org/10.1016/j.ymben.2020.01.002
- Yang P, Wang J, Pang Q, Zhang F, Wang J, Wang Q, et al. 2017. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Metab. Eng. 43: 21-28. https://doi.org/10.1016/j.ymben.2017.08.001
- Mohsen MG, Midy MK, Balaji A, Breaker RR. 2023. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Res. 51: 966-981.
- Harbaugh SV, Silverman AD, Chushak YG, Zimlich K, Wolfe M, Thavarajah W, et al. 2022. Engineering a synthetic dopamine-responsive riboswitch for in vitro biosensing. ACS Synth. Biol. 11: 2275-2283. https://doi.org/10.1021/acssynbio.1c00560
- Zeng W, Guo L, Xu S, Chen J, Zhou J. 2020. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 38: 888-906. https://doi.org/10.1016/j.tibtech.2020.01.001
- Zhou S, Liu P, Chen J, Du G, Li H, Zhou J. 2016. Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 100: 10443-10452. https://doi.org/10.1007/s00253-016-7672-8
- Xiong D, Lu S, Wu J, Liang C, Wang W, Wang W, et al. 2017. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metab. Eng. 40: 115-123. https://doi.org/10.1016/j.ymben.2017.01.006
- Leavitt JM, Wagner JM, Tu CC, Tong A, Liu YY, Alper HS. 2017. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J. 12: 1600687.
- Morrison MS, Wang T, Raguram A, Hemez C, Liu DR. 2021. Disulfide-compatible phage-assisted continuous evolution in the periplasmic space. Nat. Commun. 12: 5959.
- McLure RJ, Radford SE, Brockwell DJ. 2022. High-throughput directed evolution: a golden era for protein science. Trends Chem. 4: 378-391. https://doi.org/10.1016/j.trechm.2022.02.004
- Wu J, Jiang P, Chen W, Xiong D, Huang L, Jia J, et al. 2017. Design and application of a lactulose biosensor. Sci. Rep. 7: 45994.
- Wang M, Li S, Zhao H. 2016. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnol. Bioeng. 113: 206-215. https://doi.org/10.1002/bit.25676
- Michener JK, Smolke CD. 2012. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab. Eng. 14: 306-316. https://doi.org/10.1016/j.ymben.2012.04.004
- Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. 2021. Directed evolution: methodologies and applications. Chem. Rev. 121: 12384-12444. https://doi.org/10.1021/acs.chemrev.1c00260
- Zhou S, Lyu Y, Li H, Koffas MA, Zhou J. 2019. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy. Biotechnol. Bioeng. 116: 1392-1404. https://doi.org/10.1002/bit.26941
- Teng Y, Zhang J, Jiang T, Zou Y, Gong X, Yan Y. 2022. Biosensor-enabled pathway optimization in metabolic engineering. Curr. Opin. Biotechnol. 75: 102696.
- Liu Y, Zhuang Y, Ding D, Xu Y, Sun J, Zhang D. 2017. Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synth. Biol. 6: 837-848. https://doi.org/10.1021/acssynbio.6b00328
- Xu S, Zhang L, Zhou S, Deng Y. 2021. Biosensor-based multi-gene pathway optimization for enhancing the production of glycolate. Appl. Environ. Microbiol. 87: e0011321.
- Van Brempt M, Peeters AI, Duchi D, De Wannemaeker L, Maertens J, De Paepe B, et al. 2022. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway. Microb. Cell Fact. 21: 49.
- Zhu Z, Zhang J, Ji X, Fang Z, Wu Z, Chen J, et al. 2018. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 102: 4615-4627. https://doi.org/10.1007/s00253-018-8937-1
- Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, et al. 2016. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J. Ind. Microbiol. Biotechnol. 43: 1227-1235. https://doi.org/10.1007/s10295-016-1803-1
- Cai Y, Xia M, Dong H, Qian Y, Zhang T, Zhu B, et al. 2018. Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti. BMC Biotechnol. 18: 27.
- Qiu C, Huang M, Hou Y, Tao H, Zhao J, Shen Y, et al. 2022. Biosensor-coupled In Vivo mutagenesis and omics analysis reveals reduced lysine and arginine synthesis to improve malonyl-coenzyme a flux in Saccharomyces cerevisiae. mSystems 7: e01366-01321.
- Qiu X, Xu P, Zhao X, Du G, Zhang J, Li J. 2020. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metab. Eng. 60: 66-76. https://doi.org/10.1016/j.ymben.2020.03.006
- d'Oelsnitz S, Ellington A. 2018. Continuous directed evolution for strain and protein engineering. Curr. Opin. Biotechnol. 53: 158-163. https://doi.org/10.1016/j.copbio.2017.12.020
- Luan GD, Bao GH, Lin Z, Li Y, Chen ZG, Li Y, et al. 2015. Comparative genome analysis of a thermotolerant Escherichia coli obtained by genome replication engineering assisted continuous evolution (GREACE) and its parent strain provides new understanding of microbial heat tolerance. New Biotechnol. 32: 732-738. https://doi.org/10.1016/j.nbt.2015.01.013
- Raman S, Rogers JK, Taylor ND, Church GM. 2014. Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111: 17803-17808. https://doi.org/10.1073/pnas.1409523111
- Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H. 2017. Automated multiplex genome-scale engineering in yeast. Nat. Commun. 8: 15187.
- Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 3: 1231143.
- Hess GT, Fresard L, Han K, Lee CH, Li A, Cimprich KA, et al. 2016. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13: 1036.
- Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, et al. 2017. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35: 48.
- Liang L, Liu R, Garst AD, Lee T, Beckham GT, Gill RT. 2017. CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab. Eng. 41: 1-10. https://doi.org/10.1016/j.ymben.2017.02.009
- Raman S, Rogers JK, Taylor ND, Church GM. 2014. Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. 111: 17803-17808. https://doi.org/10.1073/pnas.1409523111
- DeVito JA. 2007. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res. 36: e4.