Acknowledgement
This project was supported by the by the National Natural Science Foundation of China (Grant No. 81930111), and the research was also supported by the Biosafety Laboratory of Integrated Chinese and Western Medicine at Zhejiang Chinese Medicine University (BSL20205713156), the Zhejiang Province Traditional Chinese Medicine Science and Technology project (2023ZF157), and the Research Project of Zhejiang Chinese Medical University (2021RCZXZK23, 2022GJYY025).
References
- Riley LW. 2020. Distinguishing pathovars from nonpathovars: Escherichia coli. Microbiol. Spectr. 8. doi: 10.1128/microbiolspec.AME-0014-2020.
- Dolatyar Dehkharghani A, Haghighat S, Rahnamaye Farzami M, Rahbar M, Douraghi M. 2021. Clonal relationship and resistance profiles among ESBL-producing Escherichia coli. Front. Cell. Infect. Microbiol. 11: 560622.
- Paitan Y. 2018. Current trends in antimicrobial resistance of Escherichia coli. Curr. Topics Microbiol. Immunol. 416: 181-211. https://doi.org/10.1007/82_2018_110
- Peng XQ, Zhou HF, Zhang YY, Yang JH, Wan HT, He Y. 2016. Antiviral effects of Yinhuapinggan granule against influenza virus infection in the ICR mice model. J. Nat. Med. 70: 75-88. https://doi.org/10.1007/s11418-015-0939-z
- Jin L, Zhang Y, Yang J, Zhou H, Jia G, He Y, et al. 2022. Investigation of pharmacological mechanisms of Yinhua Pinggan Granule on the treatment of Pneumonia through network pharmacology and in vitro. Biomed Res. Int. 2022: 1602447.
- Guo P, Jin L, Zhou H, Bao Y, Yang J, Chen J, et al. 2023. Glycyrrhetinic acid protects against multidrug-resistant Acinetobacter baumannii-induced lung epithelial cells injury by regulating inflammation and oxidative stress. BMC Pharmacol. Toxicol. 24: 5.
- Jiagang D, Li C, Wang H, Hao E, Du Z, Bao C, et al. 2011. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem. Biophys. Res. Commun. 411: 523-529. https://doi.org/10.1016/j.bbrc.2011.06.162
- Makarevic J, Rutz J, Juengel E, Kaulfuss S, Reiter M, Tsaur I, et al. 2014. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2. PLoS One 9: e105590.
- He XY, Wu LJ, Wang WX, Xie PJ, Chen YH, Wang F. 2020. Amygdalin - A pharmacological and toxicological review. J. Ethnopharmacol. 254: 112717.
- Costantini PE, Firrincieli A, Fedi S, Parolin C, Viti C, Cappelletti M, et al. 2021. Insight into phenotypic and genotypic differences between vaginal Lactobacillus crispatus BC5 and Lactobacillus gasseri BC12 to unravel nutritional and stress factors influencing their metabolic activity. Microb. Genom. 7: 000575.
- Hwang HJ, Lee HJ, Kim CJ, Shim I, Hahm DH. 2008. Inhibitory effect of amygdalin on lipopolysaccharide-inducible TNF-alpha and IL-1beta mRNA expression and carrageenan-induced rat arthritis. J. Microbiol. Biotechnol. 18: 1641-1647.
- Malireddi RKS, Kesavardhana S, Kanneganti TD. 2019. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front. Cell. Infect. Microbiol. 9: 406.
- Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. 2021. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597: 415-419. https://doi.org/10.1038/s41586-021-03875-8
- Zheng M, Kanneganti TD. 2020. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol. Rev. 297: 26-38. https://doi.org/10.1111/imr.12909
- Gurung P, Burton A, Kanneganti TD. 2016. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis. Proc. Natl. Acad. Sci. USA 113: 4452-4457. https://doi.org/10.1073/pnas.1601636113
- Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ, et al. 2014. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516: 246-249. https://doi.org/10.1038/nature13788
- Samir P, Malireddi RKS, Kanneganti TD. 2020. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 10: 238.
- Cui Y, Wang X, Lin F, Li W, Zhao Y, Zhu F, et al. 2022. MiR-29a-3p Improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis. 13: 899-909. https://doi.org/10.14336/AD.2021.1023
- Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, et al. 2020. Identification of the PANoptosome: a molecular platform triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 10: 237.
- Dunn SJ, Connor C, McNally A. 2019. The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: the complexity of clones and plasmids. Curr. Opin. Microbiol. 51: 51-56. https://doi.org/10.1016/j.mib.2019.06.004
- Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, et al. 2021. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int. J. Biol. Sci. 17: 2703-2717. https://doi.org/10.7150/ijbs.59404
- Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140. https://doi.org/10.1038/nrmicro818
- Harris PN, Tambyah PA, Paterson DL. 2015. β-lactam and β-lactamase inhibitor combinations in the treatment of extended-spectrum β-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect. Dis. 15: 475-485. https://doi.org/10.1016/S1473-3099(14)70950-8
- Stocks CJ, Phan MD, Achard MES, Nhu NTK, Condon ND, Gawthorne JA, et al. 2019. Uropathogenic Escherichia coli employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proc. Natl. Acad. Sci. USA116: 6341-6350. https://doi.org/10.1073/pnas.1820870116
- Ulett GC, Totsika M, Schaale K, Carey AJ, Sweet MJ, Schembri MA. 2013. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr. Opin. Microbiol. 16: 100-107. https://doi.org/10.1016/j.mib.2013.01.005
- Guan X, Jin L, Yu D, He Y, Bao Y, Zhou H, et al. 2022. Glycyrrhetinic acid prevents carbapenem-resistant Klebsiella pneumoniae-induced cell injury by inhibiting mitochondrial dysfunction via Nrf-2 pathway. Microb. Pathog. 177: 105825.
- Si Z, Zhang B. 2021. Amygdalin attenuates airway epithelium apoptosis, inflammation, and epithelial-mesenchymal transition through restraining the TLR4/NF-κB signaling pathway on LPS-treated BEAS-2B bronchial epithelial cells. Int. Arch. Allergy Immunol. 182: 997-1007. https://doi.org/10.1159/000514209
- Gluschko A, Herb M, Wiegmann K, Krut O, Neiss WF, Utermohlen O, et al. 2018. The β(2) integrin Mac-1 induces protective LC3-associated phagocytosis of Listeria monocytogenes. Cell Host Microbe 23: 324-337.e325. https://doi.org/10.1016/j.chom.2018.01.018
- Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, et al. 1995. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9: 202-209. https://doi.org/10.1038/ng0295-202
- West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476-480. https://doi.org/10.1038/nature09973
- Winterbourn CC, Kettle AJ. 2013. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18: 642-660. https://doi.org/10.1089/ars.2012.4827
- Sies H, Jones DP. 2020. Reactive Oxygen Species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21: 363-383. https://doi.org/10.1038/s41580-020-0230-3
- Niki E. 2016. Oxidative stress and antioxidants: distress or eustress? Arch. Biochem. Biophys. 595: 19-24. https://doi.org/10.1016/j.abb.2015.11.017
- Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermohlen O, et al. 2019. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci. Signal. 12: eaar5926.
- Craig M, Slauch JM. 2009. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS One 4: e4975.
- Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, et al. 2011. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol. 89: 873-891. https://doi.org/10.1189/jlb.1010550
- Slauch JM. 2011. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol. Microbiol. 80: 580-583. https://doi.org/10.1111/j.1365-2958.2011.07612.x
- Hayes JD, Dinkova-Kostova AT, Tew KD. 2020. Oxidative stress in cancer. Cancer Cell 38: 167-197. https://doi.org/10.1016/j.ccell.2020.06.001
- Ju HQ, Lu YX, Chen DL, Zuo ZX, Liu ZX, Wu QN, et al. 2019. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J. Nat. Cancer Inst. 111: 584-596. https://doi.org/10.1093/jnci/djy160
- Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, et al. 2018. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 28: 1171-1185. https://doi.org/10.1038/s41422-018-0090-y
- Chen J, Hu Y, Mou X, Wang H, Xie Z. 2021. Amygdalin alleviates renal injury by suppressing inflammation, oxidative stress and fibrosis in streptozotocin-induced diabetic rats. Life Sci. 265: 118835.
- Tian Y, Li Y, Liu J, Lin Y, Jiao J, Chen B, et al. 2022. Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis. Bioact. Mater. 9: 428-445. https://doi.org/10.1016/j.bioactmat.2021.07.033
- Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, et al. 2021. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37: 109858.
- Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, et al. 2022. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct. Target. Ther. 7: 54.
- Muller S, Glass M, Singh AK, Haase J, Bley N, Fuchs T, et al. 2019. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 47: 375-390. https://doi.org/10.1093/nar/gky1012