DOI QR코드

DOI QR Code

Assembly and Function of Seed Endophytes in Response to Environmental Stress

  • Yong-Lan Wang (State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University) ;
  • Han-Bo Zhang (State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University)
  • Received : 2023.03.03
  • Accepted : 2023.05.17
  • Published : 2023.09.28

Abstract

Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.

Keywords

Acknowledgement

This work was supported by the Major Science and Technology Project in Yunnan Province, PR China (grant No. 202001BB050001), and the Recommend Exempted Postgraduate Research and Innovation Fund Project of Yunnan University (grant No. 2021T083).

References

  1. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. 2011. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol. 62: 188-197. https://doi.org/10.1007/s00248-011-9883-y
  2. Gazis R, Chaverri P. 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fugal Eol. 3: 240-254. https://doi.org/10.1016/j.funeco.2009.12.001
  3. Martinez-Arias C, Sobrino-Plata J, Medel D, Gil L, Martin JA, Rodriguez-Calcerrada J. 2021. Stem endophytes increase root development, photosynthesis, and survival of elm plantlets (Ulmus minor Mill.). J. Plant Physiol. 261: 153420.
  4. Tian B, Zhang C, Ye Y, Wen J, Wu Y, Wang H, et al. 2017. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric. Ecosys. Environ. 247: 149-156. https://doi.org/10.1016/j.agee.2017.06.041
  5. Nelson EB. 2018. The seed microbiome: origins, interactions, and impacts. Plant Soil. 422: 7-34. https://doi.org/10.1007/s11104-017-3289-7
  6. Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC. 2014. Vertical transmission of fungal endophytes is widespread in forbs. Ecol. Evol. 4: 1199-1208. https://doi.org/10.1002/ece3.953
  7. Kinge TR, Cason ED, Valverde A, Nyaga M, Gryzenhout M. 2019. Endophytic seed mycobiome of six sorghum (Sorghum bicolor) cultivars from commercial seedlots using an Illumina sequencing approach. Mycosphere 10: 739-756. https://doi.org/10.5943/mycosphere/10/1/16
  8. Hardoim PR, van Overbeek LS, Elsas JD. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463-471. https://doi.org/10.1016/j.tim.2008.07.008
  9. Shade A, Jacques MA, Barret M. 2017. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37: 15-22. https://doi.org/10.1016/j.mib.2017.03.010
  10. Zhang W, Mace WJ, Matthew C, Card SD. 2019. The impact of endophyte infection, seed aging, and imbibition on selected sugar metabolite concentrations in seed. J. Agric. Food Chem. 67: 6921-6929. https://doi.org/10.1021/acs.jafc.9b01618
  11. Truyens S, Weyens N, Cuypers A, Vangronsveld J. 2015. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7: 40-50. https://doi.org/10.1111/1758-2229.12181
  12. Vujanovic V, Germida JJ. 2017. Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Can. J. Plant Sci. 97: 972-981. https://doi.org/10.1139/CJPS-2016-0261
  13. Guo J, Bowatte S, Hou F. 2021. Diversity of endophytic bacteria and fungi in seeds of Elymus nutans growing in four locations of Qinghai Tibet Plateau, China. Plant Soil 459: 49-63. https://doi.org/10.1007/s11104-020-04608-y
  14. Shahzad R, Waqas M, Khan AL, Al-Hosni K, Kang SM, Seo CW, et al. 2017. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol. Hungarica 68: 175-186. https://doi.org/10.1556/018.68.2017.2.5
  15. Samreen T, Naveed M, Nazir MZ, Asghar HN, Khan MI, Zahir ZA, et al. 2021. Seed associated bacterial and fungal endophytes: diversity, life cycle, transmission, and application potential. Appl. Soil Ecol. 168: 104191.
  16. Barret M, Briand M, Bonneau S, Preveaux A, Valiere S, Bouchez O, et al. 2015. Emergence shapes the structure of the seed microbiota. Appl. Environ. Microbiol. 81: 1257-1266. https://doi.org/10.1128/AEM.03722-14
  17. Laihonen M, Saikkonen K, Helander M, Vazquez de Aldana BR, Zabalgogeazcoa I, Fuchs B. 2021. Epichloe endophyte-promoted seed pathogen increases host grass resistance against insect herbivory. Front. Microbiol. 12: 786619.
  18. Ganley RJ, Newcombe G. 2006. Fungal endophytes in seeds and needles of Pinus monticola. Mycol. Res. 110: 318-327. https://doi.org/10.1016/j.mycres.2005.10.005
  19. Forte F, Schmid J, Dijkwel P, Nagy I, Hume D, Johnson R, et al. 2020. Fungal endophyte colonization patterns alter over time in the novel association between Lolium perenne and Epichloe endophyte AR37. Front. Plant Sci. 11: 570026.
  20. Lahiri A, Murphy BR, Hodkinson TR. 2021. Assessing genotypic and environmental effects on endophyte communities of fraxinus (Ash) using culture dependent and Independent DNA sequencing. J. Fungi 7: 565.
  21. Thomas P, Shaik S. 2020. Molecular profiling on surface-disinfected tomato seeds reveals high diversity of cultivation-recalcitrant endophytic bacteria with low shares of spore-forming firmicutes. Microb. Ecol. 79: 910-924. https://doi.org/10.1007/s00248-019-01440-5
  22. Bastias DA, Bustos LB, Jauregui R, Barrera A, Acuna-Rodriguez IS, Molina-Montenegro MA, et al. 2021. Epichloe fungal endophytes influence seed-associated bacterial communities. Front. Microbiol. 12: 795354.
  23. Girsowicz R, Moroenyane I, Steinberger Y. 2019. Bacterial seed endophyte community of annual plants modulated by plant photosynthetic pathways. Microbiol. Res. 223: 58-62. https://doi.org/10.1016/j.micres.2019.03.001
  24. Abdelaal K, AlKahtani M, Attia K, Hafez Y, Kiraly L, Kunstler A. 2021. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology (Basel) 10: 520.
  25. Tenorio Berrio R, Nelissen H, Inze D, Dubois M. 2022. Increasing yield on dry fields: molecular pathways with growing potential. Plant J. 109: 323-341. https://doi.org/10.1111/tpj.15550
  26. Misganaw G, Simachew A, Gessesse A. 2019. Endophytes of finger millet (Eleusine coracana) seeds. Symbiosis 78: 203-213. https://doi.org/10.1007/s13199-019-00607-5
  27. Newman LA, Reynolds CM. 2005. Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol. 23: 6-8. https://doi.org/10.1016/j.tibtech.2004.11.010
  28. Arenas-Lago D, Santos ES, Carvalho LC, Abreu MM, Andrade ML. 2018. Cistus monspeliensis L. as a potential species for rehabilitation of soils with multielemental contamination under Mediterranean conditions. Environ. Sci. Poll. Res. Int. 25: 6443-6455. https://doi.org/10.1007/s11356-017-0957-3
  29. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100: 1738-1750. https://doi.org/10.3732/ajb.1200572
  30. Vorholt JA. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10: 828-840. https://doi.org/10.1038/nrmicro2910
  31. Liu H, Brettell LE, Singh B. 2020. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25: 841-844. https://doi.org/10.1016/j.tplants.2020.06.003
  32. Franco C. 2010. Sustainable agricultural crop production by endophytic actinobacteria. J. Biotechnol. 150: S290-S290. https://doi.org/10.1016/j.jbiotec.2010.09.234
  33. Mei C, Amaradasa BS, Chretien RL, Liu D, Snead G, Samtani JB, et al. 2021. A potential application of endophytic bacteria in strawberry production. Horticulturae 7: 504.
  34. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206: 1196-1206. https://doi.org/10.1111/nph.13312
  35. Frank A, Guzman J, Shay J. 2017. Transmission of bacterial endophytes. Microorganisms 5: 70.
  36. Rudgers JA, Afkhami ME, Rua MA, Davitt AJ, Hammer S, Huguet VM. 2009. A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 90: 1531-1539. https://doi.org/10.1890/08-0116.1
  37. Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S. 2013. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J. Appl. Microbiol. 114: 836-853. https://doi.org/10.1111/jam.12088
  38. Ngugi HK, Scherm H. 2006. Biology of flower-infecting fungi. Ann. Rev. Phytopathol. 44: 261-282. https://doi.org/10.1146/annurev.phyto.44.070505.143405
  39. Perry DA. 1997. Seedborne diseases and their control: principles and practice. by R. B. Maude. Wallingford, UK: CAB INTERNATIONAL (1996), pp. 280., £40.00. ISBN 0-85198-922-5. Exper. Agric. 33: 385-387. https://doi.org/10.1017/S0014479797253123
  40. Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ. 2018. What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci. 9: 24.
  41. Newcombe G, Harding A, Ridout M, Busby PE. 2018. A hypothetical bottleneck in the plant microbiome. Front. Microbiol. 9: 1645.
  42. Aschehoug ET, Metlen KL, Callaway RM, Newcombe G. 2012. Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology 93: 3-8. https://doi.org/10.1890/11-1347.1
  43. Abdelfattah A, Tack AJM, Lobato C, Wassermann B, Berg G. 2023. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 31: 346-355. https://doi.org/10.1016/j.tim.2022.10.009
  44. Bergmann GE, Leveau JHJ. 2022. A metacommunity ecology approach to understanding microbial community assembly in developing plant seeds. Front. Microbiol. 13: 877519.
  45. Fort T, Pauvert C, Zanne AE, Ovaskainen O, Caignard T, Barret M, et al. 2021. Maternal effects shape the seed mycobiome in Quercus petraea. New Phytol. 230: 1594-1608. https://doi.org/10.1111/nph.17153
  46. Zhou J, Ning D. 2017. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81: e00002-17. https://doi.org/10.1128/MMBR.00002-17
  47. Kim H, Kim C, Lee Y-H. 2023. The single-seed microbiota reveals rare taxa-associated community robustness. Phytobiomes J. oi.org/10.1094/PBIOMES-10-22-0068-R.
  48. Chesneau G, Laroche B, Preveaux A, Marais C, Briand M, Marolleau B, et al. 2022.mBio 13: e0164822.
  49. Kim H, Jeon J, Lee KK, Lee Y-H. 2022. Longitudinal transmission of bacterial and fungal communities from seed to seed in rice. Commun. Biol. 5: 772.
  50. Prado A, Marolleau B, Vaissiere BE, Barret M, Torres-Cortes G. 2020. Insect pollination: an ecological process involved in the assembly of the seed microbiota. Sci. Rep. 10: 3575.
  51. Chesneau G, Laroche B, Preveaux A, Marais C, Briand M, Marolleau B, et al. 2022. Single seed microbiota: assembly and transmission from parent plant to seedling. mBio 13: e0164822.
  52. Rezki S, Campion C, Simoneau P, Jacques M-A, Shade A, Barret M. 2018. Assembly of seed-associated microbial communities within and across successive plant generations. Plant Soil 422: 67-79. https://doi.org/10.1007/s11104-017-3451-2
  53. Cankar K, Kraigher H, Ravnikar M, Rupnik M. 2005. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol. Lett. 244: 341-345. https://doi.org/10.1016/j.femsle.2005.02.008
  54. Mundt JO, Hinkle NF. 1976. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 32: 694-698. https://doi.org/10.1128/aem.32.5.694-698.1976
  55. Truyens S, Weyens N, Cuypers A, Vangronsveld J. 2013. Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana. Plant Biol. 15: 971-981. https://doi.org/10.1111/j.1438-8677.2012.00711.x
  56. Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, et al. 2014. The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int. J. Phytoremediation 16: 643-659. https://doi.org/10.1080/15226514.2013.837027
  57. Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, et al. 2013. Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb. Biotechnol. 6: 371-384. https://doi.org/10.1111/1751-7915.12057
  58. Walitang DI, Kim CG, Kim K, Kang Y, Kim YK, Sa T. 2018. The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC Plant Biol. 18: 51.
  59. Bintarti AF, Kearns PJ, Sulesky-Grieb A, Shade A. 2022. Abiotic treatment to common bean plants results in an altered endophytic seed microbiome. Microbiol. Spectr. 10: e0021021.
  60. Hone H, Mann R, Yang G, Kaur J, Tannenbaum I, Li T, et al. 2021. Profiling, isolation and characterisation of beneficial microbes from the seed microbiomes of drought tolerant wheat. Sci. Rep. 11: 11916.
  61. Welty RE, Azevedo MD, Cooper TM. 1987. Influence of moisture-content, temperature, and length of storage on seed-germination and survival of endophytic fungi in seeds of tall fescue and perennial ryegrass. Phytopathology 77: 893-900. https://doi.org/10.1094/Phyto-77-893
  62. Wijewardana C, Reddy KR, Krutz LJ, Gao W, Bellaloui N. 2019. Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS One 14: e0214977.
  63. Langeroudi AR, Radicetti E, Campiglia E. 2018. How cover crop residue management and herbicide rate affect weed management and yield of tomato (Solanum lycopersicon L.) crop. Renew. Agric. Food Syst. 34: 1-9. https://doi.org/10.1017/S1742170518000054
  64. van Esse HP, Reuber TL, van der Does D. 2020. Genetic modification to improve disease resistance in crops. New Phytol. 225: 70-86. https://doi.org/10.1111/nph.15967
  65. Peixoto RS, Voolstra CR, Sweet M, Duarte CM, Carvalho S, Villela H, et al. 2022. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. 7: 1726-1735. https://doi.org/10.1038/s41564-022-01173-1
  66. Cohen A, Travaglia C, Bottini R, Piccoli P. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Bot. 87: 455-462. https://doi.org/10.1139/B09-023
  67. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, et al. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17: 10754-10773. https://doi.org/10.3390/molecules170910754
  68. Diaz Herrera S, Grossi C, Zawoznik M, Daniela Groppa M. 2016. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol. Res. 186: 37-43. https://doi.org/10.1016/j.micres.2016.03.002
  69. Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M, et al. 2016. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol. Biochem. 106: 236-243. https://doi.org/10.1016/j.plaphy.2016.05.006
  70. Qin Y, Pan X, Yuan Z. 2016. Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecol. 24: 53-60. https://doi.org/10.1016/j.funeco.2016.08.011
  71. Khalaf EM, Raizada MN. 2016. Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiol. 16: 131.
  72. Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, et al. 2014. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J. Microbiol. Biotechnol. 30: 835-845. https://doi.org/10.1007/s11274-013-1486-y
  73. Esther Puente M, Li CY, Bashan Y. 2009. Rock-degrading endophytic bacteria in cacti. Environ. Exper. Bot. 66: 389-401. https://doi.org/10.1016/j.envexpbot.2009.04.010
  74. Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T. 2017. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol. 17: 209.
  75. Shao J, Miao Y, Liu K, Ren Y, Xu Z, Zhang N, et al. 2021. Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization. Soil Biol. Biochem. 159: 108273.
  76. de Voogd NJ, Cleary DFR, Polonia ARM, Gomes NCM. 2015. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. 91: fiv019.
  77. Sanchez-Lopez AS, Thijs S, Beckers B, Carmen Gonzalez-Chavez M, Weyens N, Carrillo-Gonzalez R, et al. 2018. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil 422: 51-66. https://doi.org/10.1007/s11104-017-3176-2
  78. Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, Wu S, et al. 2021. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7: 60-72. https://doi.org/10.1038/s41477-020-00826-5
  79. White JF, Kingsley KI, Kowalski KP, Irizarry I, Micci A, Soares MA, et al. 2018. Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Plant Soil 422: 195-208. https://doi.org/10.1007/s11104-016-3169-6
  80. Yang F, Zhang R, Wu X, Xu T, Ahmad S, Zhang X, et al. 2020. An endophytic strain of the genus Bacillus isolated from the seeds of maize (Zea mays L.) has antagonistic activity against maize pathogenic strains. Microb. Pathog. 142: 104074.
  81. Kumar K, Verma A, Pal G, White JF, Verma SK. 2021. Seed endophytic bacteria of pearl millet (Pennisetum glaucum L.) promote seedling development and defend against a fungal phytopathogen. Front. Microbiol. 12: 774293.
  82. Pal G, Kumar K, Verma A, Verma SK. 2022. Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiol. Res. 255: 126926.
  83. Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  84. Gao M, Xiong C, Gao C, Tsui CKM, Wang M-M, Zhou X, et al. 2021. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9: 187.
  85. Verma SK, Kingsley KL, Bergen MS, Kowalski KP, White JF. 2018. Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis. Microorganisms 6: 21.
  86. Verma SK, White JF. 2018. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J. Appl. Microbiol. 124: 764-778. https://doi.org/10.1111/jam.13673
  87. Khalaf EM, Raizada MN. 2018. Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew (Vol. 9, 42, 2018). Front. Microbiol. 9: 42.
  88. Melchior EA, Smith JK, Schneider LG, Mulliniks JT, Bates GE, Flythe MD, et al. 2019. Effects of endophyte-infected tall fescue seed and red clover isoflavones on rumen microbial populations and physiological parameters of beef cattle. Transl. Anim. Sci. 3: 315-328. https://doi.org/10.1093/tas/txy147
  89. Finch S, Pennell C, Kerby J, Cave V. 2015. Mice find endophyte-infected seed of tall fescue unpalatable - implications for the aviation industry. Grass Forage Sci. 71. doi: 10.1111/gfs.12203.
  90. Brem D, Leuchtmann A. 2001. Epichloe grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126: 522-530. https://doi.org/10.1007/s004420000551
  91. Roane T, Pepper I, Gentry T. 2015. Microorganisms and metal pollutants, pp. 415-439. Ed.
  92. Liu D, Cui Y, Walcott R, Diaz-Perez J, Tishchenko V, Chen J. 2018. Transmission of human enteric pathogens from artificially-inoculated flowers to vegetable sprouts/seedlings developed via contaminated seeds. Food Control 99: 21-27. https://doi.org/10.1016/j.foodcont.2018.12.023
  93. Wang J-l, Li T, Liu G-y, Smith JM, Zhao Z-w. 2016. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci. Rep. 6: 22028.
  94. Parmar S, Sharma VK, Li T, Tang W, Li H. 2022. Fungal seed endophyte FZT214 improves Dysphania ambrosioides Cd tolerance throughout different developmental Stages. Front. Microbiol. 12: 783475
  95. Zhang X, Li C, Nan Z. 2012. Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci. China Life Sci. 55: 793-799. https://doi.org/10.1007/s11427-012-4359-y
  96. Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, et al. 2012. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89: 743-750. https://doi.org/10.1016/j.chemosphere.2012.07.005
  97. Arenas-Lago D, Carvalho LC, Santos ES, Abreu MM. 2021. Influence of seed source and soil contamination on ecophysiological responses of Lavandula pedunculata in rehabilitation of mining areas. Plants (Basel, Switzerland) 11: 105.
  98. Deng Z, Wang W, Tan H, Cao L. 2012. Characterization of heavy metal-resistant endophytic yeast Cryptococcus sp. CBSB78 from rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut. 223: 5321-5329. https://doi.org/10.1007/s11270-012-1282-6
  99. Dai Y, Li X-Y, Wang Y, Li C-X, He Y, Lin H-H, et al. 2020. The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages. Microbiol. Biol. 13: 1461-1476. https://doi.org/10.1111/1751-7915.13618
  100. Radhakrishnan R, Khan AL, Lee I-J. 2013. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J. Microbiol. 51: 850-857. https://doi.org/10.1007/s12275-013-3168-8
  101. Hubbard M, Germida J, Vujanovic V. 2012. Fungal endophytes improve wheat seed germination under heat and drought stress. Bot. 90: 137-149. https://doi.org/10.1139/b11-091
  102. Hubbard M, Germida JJ, Vujanovic V. 2014. Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J. Appl. Microbiol. 116: 109-122. https://doi.org/10.1111/jam.12311
  103. Jeong S, Kim T-M, Choi B, Kim Y, Kim E. 2021. Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance. Sci. Rep. 11: 13307.
  104. La Fua J, Sabaruddin L, Santiaji Bande LO, Leomo S, Kade Sutariati GA, Khaeruni A, et al. 2021. Isolation of drought-tolerant endophyte bacteria from local tomato plants. Pak. J. Biol. Sci. 24: 1055-1062. https://doi.org/10.3923/pjbs.2021.1055.1062
  105. Bailly C, Roldan MVG. 2023. Impact of climate perturbations on seeds and seed quality for global agriculture. Biochem. J. 480: 177-196. https://doi.org/10.1042/BCJ20220246
  106. Fernandez R, Chantre GR, Renzi JP. 2021. Seed dormancy of Lolium perenne L. related to the maternal environment during seed filling. Seed Sci. Res. 31: 217-223. https://doi.org/10.1017/S0960258521000155
  107. Huang Z, Footitt S, Finch-Savage WE. 2014. The effect of temperature on reproduction in the summer and winter annual Arabidopsis thaliana ecotypes Bur and Cvi. Annal. Bot. 113: 921-929. https://doi.org/10.1093/aob/mcu014
  108. Sloat LL, Davis SJ, Gerber JS, Moore FC, Ray DK, West PC, et al. 2020. Climate adaptation by crop migration. Nat. Commun. 11: 1243.
  109. Di S, Yang A. 2019. Analysis of productivity and stability of synthetic microbial communities. J. R. Soc. Interface 16: 20180859.
  110. Pradhan S, Tyagi R, Sharma S. 2022. Combating biotic stresses in plants by synthetic microbial communities: principles, applications and challenges. J. Appl. Microbiol. 133: 2742-2759. https://doi.org/10.1111/jam.15799
  111. Idbella M, Bonanomi G, De Filippis F, Amor G, Chouyia FE, Fechtali T, et al. 2021. Contrasting effects of Rhizophagus irregularis versus bacterial and fungal seed endophytes on Trifolium repens plant-soil feedback. Mycorrhiza 31: 103-115. https://doi.org/10.1007/s00572-020-01003-4
  112. Iannone LJ, Vignale MV, Pinget AD, Re A, Mc Cargo PD, Novas MV. 2017. Seed-transmitted Epichloe sp. endophyte alleviates the negative effects of head smut of grasses (Ustilago bullata) on Bromus auleticus. Fungal Ecol. 29: 45-51. https://doi.org/10.1016/j.funeco.2017.06.001