Acknowledgement
This research was supported by the Main Research Program of the Korea Food Research Institute (KFRI) and funded by the Korean Ministry of Science and ICT (Grant No. E0210202-02).
References
- Ley RE, Peterson DA, Gordon JI. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837-848. https://doi.org/10.1016/j.cell.2006.02.017
- Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57: 1-24. https://doi.org/10.1007/s00394-017-1445-8
- Pant A, Maiti TK, Mahajan D, Das B. 2022. Human gut microbiota and drug metabolism. Microb. Ecol. 23: 1-15. https://doi.org/10.1007/s00248-022-02081-x
- Pickard JM, Zeng MY, Caruso R, Nunez G. 2017. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279: 70-89. https://doi.org/10.1111/imr.12567
- Takiishi T, Fenero CIM, Camara NOS. 2017. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 5: e1373208.
- Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157: 121-141. https://doi.org/10.1016/j.cell.2014.03.011
- Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World J. Gastroenterol. 21: 8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
- Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57: 1605-1615. https://doi.org/10.1136/gut.2007.133603
- Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. Genome Med. 8: 51.
- Lee JG, Eun CS, Jo SV, Lee AR, Park CH, Han DS. 2019. The impact of gut microbiota manipulation with antibiotics on colon tumorigenesis in a murine model. PLoS One 14: e0226907.
- Xu L, Surathu A, Raplee I, Chockalingam A, Stewart S, Walker L, et al. 2020. The effect of antibiotics on the gut microbiome: a metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice. BMC Genomics 21: 263.
- Battson ML, Lee DM, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. 2018. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am. J. Physiol. Endocrinol. Metab. 314: E468-E477. https://doi.org/10.1152/ajpendo.00187.2017
- Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, et al. 2022. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat. Commun. 13: 5926.
- Lee SH, Yun Y, Kim SJ, Lee EJ, Chang Y, Ryu S, et al. 2018. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study. J. Clin. Med. 7: 282.
- Schroeder BO, Backhed F. 2016. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22: 1079-1089. https://doi.org/10.1038/nm.4185
- Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. 2020. The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol. 11: 301.
- Li LC, Han YY, Zhang ZH, Zhou WC, Fang HM, Qu J, et al. 2021. Chronic obstructive pulmonary disease treatment and pharmacist-led medication management. Drug Des. Devel. Ther. 15: 111-124. https://doi.org/10.2147/DDDT.S286315
- Koarai A, Yamada M, Ichikawa T, Fujino N, Kawayama T, Sugiura H. 2022. Triple versus LAMA/LABA combination therapy for Japanese patients with COPD: a systematic review and meta-analysis. Respir. Investig. 60: 90-98. https://doi.org/10.1016/j.resinv.2021.04.007
- Ohnishi H, Eitoku M, Yokoyama A. 2022. A systematic review and integrated analysis of biologics that target Type 2 inflammation to treat COPD with increased peripheral blood eosinophils. Heliyon 8: e09736.
- Ahlawat S, Asha, Sharma KK. 2021. Gut-organ axis: a microbial outreach and networking. Lett. Appl. Microbiol. 72: 636-668. https://doi.org/10.1111/lam.13333
- Yazar A, Atis S, Konca K, Pata C, Akbay E, Calikoglu M, et al. 2001. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am. J. Gastroenterol. 96: 1511-1516. https://doi.org/10.1111/j.1572-0241.2001.03748.x
- Ceyhan BB, Karakurt S, Cevik H, Sungur M. 2003. Bronchial hyperreactivity and allergic status in inflammatory bowel disease. Respiration 70: 60-66. https://doi.org/10.1159/000068407
- Ojha UC, Singh DP, Choudhari OK, Gothi D, Singh S. 2018. Correlation of severity of functional gastrointestinal disease symptoms with that of asthma and chronic obstructive pulmonary disease: a multicenter study. Int. J. Appl. Basic Med. Res. 8: 83-88. https://doi.org/10.4103/ijabmr.IJABMR_258_17
- Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer JD, et al. 2016. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65: 575-583. https://doi.org/10.1136/gutjnl-2015-309728
- Brown RL, Sequeira RP, Clarke TB. 2017. The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 8: 1512.
- Sze MA, Tsuruta M, Yang SW, Oh Y, Man SF, Hogg JC, et al. 2014. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One 9: e111228.
- Samuelson DR, Charles TP, de la Rua NM, Taylor CM, Blanchard EE, Luo M, et al. 2016. Analysis of the intestinal microbial community and inferred functional capacities during the host response to Pneumocystis pneumonia. Exp. Lung Res. 42: 425-439. https://doi.org/10.1080/01902148.2016.1258442
- Chen Y, Jiang Z, Lei Z, Ping J, Su J. 2021. Effect of rifaximin on gut-lung axis in mice infected with influenza A virus. Comp. Immunol. Microbiol. Infect. Dis. 75: 101611.
- Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20: 779-786. https://doi.org/10.1016/j.cmet.2014.07.003
- Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. 2021. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 66: 103293.
- Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, et al. 2009. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420: 211-219. https://doi.org/10.1042/BJ20082222
- Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, et al. 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199: 2976-2984. https://doi.org/10.4049/jimmunol.1700105
- Wang HB, Wang PY, Wang X, Wan YL, Liu YC. 2012. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57: 3126-3135. https://doi.org/10.1007/s10620-012-2259-4
- Yan H, Ajuwon KM. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12: e0179586.
- Li X, Wang C, Zhu J, Lin Q, Yu M, Wen J, et al. 2022. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-mitophagy pathway. Oxid. Med. Cell Longev. 2022: 3745135.
- Chen G, Ran X, Li B, Li Y, He D, Huang B, et al. 2018. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30: 317-325. https://doi.org/10.1016/j.ebiom.2018.03.030
- Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, et al. 2021. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir. Res. 22: 274.
- Jang YO, Lee SH, Choi JJ, Kim DH, Choi JM, Kang MJ, et al. 2020. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis. Exp. Mol. Med. 52: 1128-1139. https://doi.org/10.1038/s12276-020-0469-y
- Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, et al. 2018. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal. Immunol. 11: 785-795. https://doi.org/10.1038/mi.2017.75
- Richards LB, Li M, Folkerts G, Henricks PAJ, Garssen J, van Esch B. 2020. Butyrate and propionate restore the cytokine and house dust mite compromised barrier function of human bronchial airway epithelial dells. Int. J. Mol. Sci. 22: 65.
- Doudakmanis C, Bouliaris K, Kolla C, Efthimiou M, Koukoulis GD. 2021. Bacterial translocation in patients undergoing major gastrointestinal surgery and its role in postoperative sepsis. World J. Gastrointest. Pathophysiol. 12: 106-114. https://doi.org/10.4291/wjgp.v12.i6.106
- Comini L, Pasini E, Porta R, Olivares A, Testa C, Scalvini S, et al. 2023. Dysbiosis and leaky gut in hyper-inflated COPD patients: have smoking and exercise training any role? Respir. Med. Res. 83: 100995.
- Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, et al. 2021. Corrigendum: Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front. Immunol. 12: 779064.
- Zuo L, Li Y, Wang H, Wu R, Zhu W, Zhang W, et al. 2014. Cigarette smoking is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice. J. Crohns Colitis. 8: 1710-1722. https://doi.org/10.1016/j.crohns.2014.08.008
- Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, et al. 2016. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1: 16113.
- Yamada W, Tasaka S, Koh H, Shimizu M, Ogawa Y, Hasegawa N, et al. 2008. Role of toll-like receptor 4 in acute neutrophilic lung inflammation induced by intratracheal bacterial products in mice. J. Inflamm. Res. 1: 1-10. https://doi.org/10.2147/JIR.S3771
- Lee SY, Cho JH, Cho SS, Bae CS, Kim GY, Park DH. 2018. Establishment of a chronic obstructive pulmonary disease mouse model based on the elapsed time after LPS intranasal instillation. Lab Anim. Res. 34: 1-10. https://doi.org/10.5625/lar.2018.34.1.1
- Liu Q, Tian X, Maruyama D, Arjomandi M, Prakash A. 2021. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1beta, FFAR2, and FFAR3 expression. Am. J. Physiol. Lung Cell Mol. Physiol. 321: L65-L78. https://doi.org/10.1152/ajplung.00421.2020
- Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108: 5354-5359. https://doi.org/10.1073/pnas.1019378108
- Negi S, Pahari S, Bashir H, Agrewala JN. 2019. Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against Mycobacterium tuberculosis. Front. Immunol. 10: 1142.
- Dessein R, Bauduin M, Grandjean T, Le Guern R, Figeac M, Beury D, et al. 2020. Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice. Crit. Care 24: 611.
- Kim YJ, Lee JY, Lee JJ, Jeon SM, Silwal P, Kim IS, et al. 2022. Arginine-mediated gut microbiome remodeling promotes host pulmonary immune defense against nontuberculous mycobacterial infection. Gut Microbes 14: 2073132.
- Lai HC, Lin TL, Chen TW, Kuo YL, Chang CJ, Wu TR, et al. 2022. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut 71: 309-321. https://doi.org/10.1136/gutjnl-2020-322599
- Tan WC, Sin DD, Bourbeau J, Hernandez P, Chapman KR, Cowie R, et al. 2015. Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax 70: 822-829. https://doi.org/10.1136/thoraxjnl-2015-206938
- Smith BM, Kirby M, Hoffman EA, Kronmal RA, Aaron SD, Allen NB, et al. 2020. Association of dysanapsis with chronic obstructive pulmonary disease among older adults. JAMA 323: 2268-2280. https://doi.org/10.1001/jama.2020.6918
- Organization WH. 2019. Global Health Estimates: life expectancy and leading causes of death and disability. World Health Organization.
- Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, et al. 2019. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur. Respir J. 53: 1900164.
- Zou J, Sun T, Song X, Liu YM, Lei F, Chen MM, et al. 2022. Distributions and trends of the global burden of COPD attributable to risk factors by SDI, age, and sex from 1990 to 2019: a systematic analysis of GBD 2019 data. Respir. Res. 23: 90.
- Barnes PJ, Celli BR. 2009. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 33: 1165-1185. https://doi.org/10.1183/09031936.00128008
- Mirsadraee M, Boskabady MH, Attaran D. 2013. Diagnosis of chronic obstructive pulmonary disease earlier than current Global Initiative for Obstructive Lung Disease guidelines using a feasible spirometry parameter (maximal-mid expiratory flow/forced vital capacity). Chron. Respir. Dis. 10: 191-196. https://doi.org/10.1177/1479972313507461
- Hassali MAA, Abbas S, Ali IABH, Harun SN, Muneswarao J, Hussain R. 2020. Pharmacological and non-pharmacological management of COPD; limitations and future prospects: a review of current literature. J. Public Health 28: 357-366. https://doi.org/10.1007/s10389-019-01021-3
- Allais L, Kerckhof FM, Verschuere S, Bracke KR, De Smet R, Laukens D, et al. 2016. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. 18: 1352-1363. https://doi.org/10.1111/1462-2920.12934
- Harakeh S, Angelakis E, Karamitros T, Bachar D, Bahijri S, Ajabnoor G, et al. 2020. Impact of smoking cessation, coffee and bread consumption on the intestinal microbial composition among Saudis: a cross-sectional study. PLoS One 15: e0230895.
- Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, et al. 2020. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat. Commun. 11: 5886.
- Chiu YC, Lee SW, Liu CW, Lin RC, Huang YC, Lan TY, et al. 2021. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. PLoS One 16: e0249944.
- Li N, Yang Z, Liao B, Pan T, Pu J, Hao B, et al. 2020. Chronic exposure to ambient particulate matter induces gut microbial dysbiosis in a rat COPD model. Respir. Res. 21: 271.
- Wang Y, Li N, Li Q, Liu Z, Li Y, Kong J, et al. 2021. Xuanbai chengqi decoction ameliorates pulmonary inflammation via reshaping gut microbiota and rectifying Th17/Treg imbalance in a murine model of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 16: 3317-3335. https://doi.org/10.2147/COPD.S337181
- Tanner L, Single AB. 2020. Animal models reflecting chronic obstructive pulmonary disease and related respiratory disorders: Translating pre-clinical data into clinical relevance. J. Innate. Immun. 12: 203-225. https://doi.org/10.1159/000502489
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
- Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. 2019. Mechanisms of action of probiotics. Adv. Nutr. 10: S49-S66. https://doi.org/10.1093/advances/nmy063
- Mishra B, Reiling S, Zarena D, Wang G. 2017. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr. Opin. Chem. Biol. 38: 87-96. https://doi.org/10.1016/j.cbpa.2017.03.014
- Rose EC, Odle J, Blikslager AT, Ziegler AL. 2021. Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function. Int. J. Mol. Sci. 22: 6729.
- Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Velez E, Perdigon G. 2019. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 74: 115-124. https://doi.org/10.1159/000496426
- Michael DR, Jack AA, Masetti G, Davies TS, Loxley KE, Kerry-Smith J, et al. 2020. A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. Sci. Rep. 10: 4183.
- Tonucci LB, Olbrich Dos Santos KM, Licursi de Oliveira L, Rocha Ribeiro SM, Duarte Martino HS. 2017. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study. Clin. Nutr. 36: 85-92. https://doi.org/10.1016/j.clnu.2015.11.011
- Ballini A, Santacroce L, Cantore S, Bottalico L, Dipalma G, Topi S, et al. 2019. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: a randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets 19: 373-381. https://doi.org/10.2174/1871530319666181221150352
- Turner RB, Woodfolk JA, Borish L, Steinke JW, Patrie JT, Muehling LM, et al. 2017. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection - a randomised controlled trial. Benef. Microbes 8: 207-215. https://doi.org/10.3920/BM2016.0160
- Liu A, Ma T, Xu N, Jin H, Zhao F, Kwok LY, et al. 2021. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9: e0085921.
- Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, et al. 2014. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 9: e87796.
- Carvalho JL, Miranda M, Fialho AK, Castro-Faria-Neto H, Anatriello E, Keller AC, et al. 2020. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One 15: e0225560.
- Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401
- Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. 2010. Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull Funct. Foods. 7: 1-19. https://doi.org/10.1616/1476-2137.15880
- Pujari R, Banerjee G. 2021. Impact of prebiotics on immune response: from the bench to the clinic. Immunol. Cell Biol. 99: 255-273. https://doi.org/10.1111/imcb.12409
- Olveira G, Gonzalez-Molero I. 2016. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol. Nutr. 63: 482-494. https://doi.org/10.1016/j.endonu.2016.07.006
- Wu Z, Mehrabi Nasab E, Arora P, Athari SS. 2022. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J. Transl. Med. 20: 130.
- Luoto R, Ruuskanen O, Waris M, Kalliomaki M, Salminen S, Isolauri E. 2014. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 133: 405-413. https://doi.org/10.1016/j.jaci.2013.08.020
- Kan H, Stevens J, Heiss G, Rose KM, London SJ. 2008. Dietary fiber, lung function, and chronic obstructive pulmonary disease in the atherosclerosis risk in communities study. Am. J. Epidemiol. 167: 570-578. https://doi.org/10.1093/aje/kwm343
- Jang YO, Kim OH, Kim SJ, Lee SH, Yun S, Lim SE, et al. 2021. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism. Sci. Rep. 11: 7008.
- Szmidt MK, Kaluza J, Harris HR, Linden A, Wolk A. 2020. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of women. Eur. J. Nutr. 59: 1869-1879. https://doi.org/10.1007/s00394-019-02038-w
- Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c- patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48: 992-1005.e8. https://doi.org/10.1016/j.immuni.2018.04.022
- Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, et al. 2019. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74: 799-809. https://doi.org/10.1111/all.13660
- Correa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR, et al. 2022. Butyrate: connecting the gut-lung axis to the management of pulmonary disorders. Front. Nutr. 9: 1011732.
- Kabel AM, Omar MS, Elmaaboud MAA. 2016. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress. Int. Immunopharmacol. 39: 335-342. https://doi.org/10.1016/j.intimp.2016.08.008
- Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, de Bruijn MJW, et al. 2020. Butyrate inhibits human mast cell activation via epigenetic regulation of FcepsilonRI-mediated signaling. Allergy 75: 1966-1978. https://doi.org/10.1111/all.14254
- Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166. https://doi.org/10.1038/nm.3444
- Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320.
- Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M. 2013. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145: 946-953. https://doi.org/10.1053/j.gastro.2013.08.058
- Rao K, Safdar N. 2016. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J. Hosp. Med. 11: 56-61. https://doi.org/10.1002/jhm.2449