DOI QR코드

DOI QR Code

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Received : 2023.01.26
  • Accepted : 2023.03.20
  • Published : 2023.09.28

Abstract

As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.

Keywords

Acknowledgement

This research was supported by the Main Research Program of the Korea Food Research Institute (KFRI) and funded by the Korean Ministry of Science and ICT (Grant No. E0210202-02).

References

  1. Ley RE, Peterson DA, Gordon JI. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837-848.  https://doi.org/10.1016/j.cell.2006.02.017
  2. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57: 1-24.  https://doi.org/10.1007/s00394-017-1445-8
  3. Pant A, Maiti TK, Mahajan D, Das B. 2022. Human gut microbiota and drug metabolism. Microb. Ecol. 23: 1-15.  https://doi.org/10.1007/s00248-022-02081-x
  4. Pickard JM, Zeng MY, Caruso R, Nunez G. 2017. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279: 70-89.  https://doi.org/10.1111/imr.12567
  5. Takiishi T, Fenero CIM, Camara NOS. 2017. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 5: e1373208. 
  6. Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157: 121-141.  https://doi.org/10.1016/j.cell.2014.03.011
  7. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World J. Gastroenterol. 21: 8787-8803.  https://doi.org/10.3748/wjg.v21.i29.8787
  8. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57: 1605-1615.  https://doi.org/10.1136/gut.2007.133603
  9. Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. Genome Med. 8: 51. 
  10. Lee JG, Eun CS, Jo SV, Lee AR, Park CH, Han DS. 2019. The impact of gut microbiota manipulation with antibiotics on colon tumorigenesis in a murine model. PLoS One 14: e0226907. 
  11. Xu L, Surathu A, Raplee I, Chockalingam A, Stewart S, Walker L, et al. 2020. The effect of antibiotics on the gut microbiome: a metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice. BMC Genomics 21: 263. 
  12. Battson ML, Lee DM, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. 2018. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am. J. Physiol. Endocrinol. Metab. 314: E468-E477.  https://doi.org/10.1152/ajpendo.00187.2017
  13. Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, et al. 2022. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat. Commun. 13: 5926. 
  14. Lee SH, Yun Y, Kim SJ, Lee EJ, Chang Y, Ryu S, et al. 2018. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study. J. Clin. Med. 7: 282. 
  15. Schroeder BO, Backhed F. 2016. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22: 1079-1089.  https://doi.org/10.1038/nm.4185
  16. Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. 2020. The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol. 11: 301. 
  17. Li LC, Han YY, Zhang ZH, Zhou WC, Fang HM, Qu J, et al. 2021. Chronic obstructive pulmonary disease treatment and pharmacist-led medication management. Drug Des. Devel. Ther. 15: 111-124.  https://doi.org/10.2147/DDDT.S286315
  18. Koarai A, Yamada M, Ichikawa T, Fujino N, Kawayama T, Sugiura H. 2022. Triple versus LAMA/LABA combination therapy for Japanese patients with COPD: a systematic review and meta-analysis. Respir. Investig. 60: 90-98.  https://doi.org/10.1016/j.resinv.2021.04.007
  19. Ohnishi H, Eitoku M, Yokoyama A. 2022. A systematic review and integrated analysis of biologics that target Type 2 inflammation to treat COPD with increased peripheral blood eosinophils. Heliyon 8: e09736. 
  20. Ahlawat S, Asha, Sharma KK. 2021. Gut-organ axis: a microbial outreach and networking. Lett. Appl. Microbiol. 72: 636-668.  https://doi.org/10.1111/lam.13333
  21. Yazar A, Atis S, Konca K, Pata C, Akbay E, Calikoglu M, et al. 2001. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am. J. Gastroenterol. 96: 1511-1516.  https://doi.org/10.1111/j.1572-0241.2001.03748.x
  22. Ceyhan BB, Karakurt S, Cevik H, Sungur M. 2003. Bronchial hyperreactivity and allergic status in inflammatory bowel disease. Respiration 70: 60-66.  https://doi.org/10.1159/000068407
  23. Ojha UC, Singh DP, Choudhari OK, Gothi D, Singh S. 2018. Correlation of severity of functional gastrointestinal disease symptoms with that of asthma and chronic obstructive pulmonary disease: a multicenter study. Int. J. Appl. Basic Med. Res. 8: 83-88.  https://doi.org/10.4103/ijabmr.IJABMR_258_17
  24. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer JD, et al. 2016. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65: 575-583.  https://doi.org/10.1136/gutjnl-2015-309728
  25. Brown RL, Sequeira RP, Clarke TB. 2017. The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 8: 1512. 
  26. Sze MA, Tsuruta M, Yang SW, Oh Y, Man SF, Hogg JC, et al. 2014. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One 9: e111228. 
  27. Samuelson DR, Charles TP, de la Rua NM, Taylor CM, Blanchard EE, Luo M, et al. 2016. Analysis of the intestinal microbial community and inferred functional capacities during the host response to Pneumocystis pneumonia. Exp. Lung Res. 42: 425-439.  https://doi.org/10.1080/01902148.2016.1258442
  28. Chen Y, Jiang Z, Lei Z, Ping J, Su J. 2021. Effect of rifaximin on gut-lung axis in mice infected with influenza A virus. Comp. Immunol. Microbiol. Infect. Dis. 75: 101611. 
  29. Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20: 779-786.  https://doi.org/10.1016/j.cmet.2014.07.003
  30. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. 2021. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 66: 103293. 
  31. Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, et al. 2009. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420: 211-219.  https://doi.org/10.1042/BJ20082222
  32. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, et al. 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199: 2976-2984.  https://doi.org/10.4049/jimmunol.1700105
  33. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. 2012. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57: 3126-3135.  https://doi.org/10.1007/s10620-012-2259-4
  34. Yan H, Ajuwon KM. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12: e0179586. 
  35. Li X, Wang C, Zhu J, Lin Q, Yu M, Wen J, et al. 2022. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-mitophagy pathway. Oxid. Med. Cell Longev. 2022: 3745135. 
  36. Chen G, Ran X, Li B, Li Y, He D, Huang B, et al. 2018. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30: 317-325.  https://doi.org/10.1016/j.ebiom.2018.03.030
  37. Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, et al. 2021. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir. Res. 22: 274. 
  38. Jang YO, Lee SH, Choi JJ, Kim DH, Choi JM, Kang MJ, et al. 2020. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis. Exp. Mol. Med. 52: 1128-1139.  https://doi.org/10.1038/s12276-020-0469-y
  39. Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, et al. 2018. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal. Immunol. 11: 785-795.  https://doi.org/10.1038/mi.2017.75
  40. Richards LB, Li M, Folkerts G, Henricks PAJ, Garssen J, van Esch B. 2020. Butyrate and propionate restore the cytokine and house dust mite compromised barrier function of human bronchial airway epithelial dells. Int. J. Mol. Sci. 22: 65. 
  41. Doudakmanis C, Bouliaris K, Kolla C, Efthimiou M, Koukoulis GD. 2021. Bacterial translocation in patients undergoing major gastrointestinal surgery and its role in postoperative sepsis. World J. Gastrointest. Pathophysiol. 12: 106-114.  https://doi.org/10.4291/wjgp.v12.i6.106
  42. Comini L, Pasini E, Porta R, Olivares A, Testa C, Scalvini S, et al. 2023. Dysbiosis and leaky gut in hyper-inflated COPD patients: have smoking and exercise training any role? Respir. Med. Res. 83: 100995. 
  43. Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, et al. 2021. Corrigendum: Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front. Immunol. 12: 779064. 
  44. Zuo L, Li Y, Wang H, Wu R, Zhu W, Zhang W, et al. 2014. Cigarette smoking is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice. J. Crohns Colitis. 8: 1710-1722.  https://doi.org/10.1016/j.crohns.2014.08.008
  45. Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, et al. 2016. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1: 16113. 
  46. Yamada W, Tasaka S, Koh H, Shimizu M, Ogawa Y, Hasegawa N, et al. 2008. Role of toll-like receptor 4 in acute neutrophilic lung inflammation induced by intratracheal bacterial products in mice. J. Inflamm. Res. 1: 1-10.  https://doi.org/10.2147/JIR.S3771
  47. Lee SY, Cho JH, Cho SS, Bae CS, Kim GY, Park DH. 2018. Establishment of a chronic obstructive pulmonary disease mouse model based on the elapsed time after LPS intranasal instillation. Lab Anim. Res. 34: 1-10.  https://doi.org/10.5625/lar.2018.34.1.1
  48. Liu Q, Tian X, Maruyama D, Arjomandi M, Prakash A. 2021. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1beta, FFAR2, and FFAR3 expression. Am. J. Physiol. Lung Cell Mol. Physiol. 321: L65-L78.  https://doi.org/10.1152/ajplung.00421.2020
  49. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108: 5354-5359.  https://doi.org/10.1073/pnas.1019378108
  50. Negi S, Pahari S, Bashir H, Agrewala JN. 2019. Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against Mycobacterium tuberculosis. Front. Immunol. 10: 1142. 
  51. Dessein R, Bauduin M, Grandjean T, Le Guern R, Figeac M, Beury D, et al. 2020. Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice. Crit. Care 24: 611. 
  52. Kim YJ, Lee JY, Lee JJ, Jeon SM, Silwal P, Kim IS, et al. 2022. Arginine-mediated gut microbiome remodeling promotes host pulmonary immune defense against nontuberculous mycobacterial infection. Gut Microbes 14: 2073132. 
  53. Lai HC, Lin TL, Chen TW, Kuo YL, Chang CJ, Wu TR, et al. 2022. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut 71: 309-321.  https://doi.org/10.1136/gutjnl-2020-322599
  54. Tan WC, Sin DD, Bourbeau J, Hernandez P, Chapman KR, Cowie R, et al. 2015. Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax 70: 822-829.  https://doi.org/10.1136/thoraxjnl-2015-206938
  55. Smith BM, Kirby M, Hoffman EA, Kronmal RA, Aaron SD, Allen NB, et al. 2020. Association of dysanapsis with chronic obstructive pulmonary disease among older adults. JAMA 323: 2268-2280.  https://doi.org/10.1001/jama.2020.6918
  56. Organization WH. 2019. Global Health Estimates: life expectancy and leading causes of death and disability. World Health Organization. 
  57. Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, et al. 2019. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur. Respir J. 53: 1900164. 
  58. Zou J, Sun T, Song X, Liu YM, Lei F, Chen MM, et al. 2022. Distributions and trends of the global burden of COPD attributable to risk factors by SDI, age, and sex from 1990 to 2019: a systematic analysis of GBD 2019 data. Respir. Res. 23: 90. 
  59. Barnes PJ, Celli BR. 2009. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 33: 1165-1185.  https://doi.org/10.1183/09031936.00128008
  60. Mirsadraee M, Boskabady MH, Attaran D. 2013. Diagnosis of chronic obstructive pulmonary disease earlier than current Global Initiative for Obstructive Lung Disease guidelines using a feasible spirometry parameter (maximal-mid expiratory flow/forced vital capacity). Chron. Respir. Dis. 10: 191-196.  https://doi.org/10.1177/1479972313507461
  61. Hassali MAA, Abbas S, Ali IABH, Harun SN, Muneswarao J, Hussain R. 2020. Pharmacological and non-pharmacological management of COPD; limitations and future prospects: a review of current literature. J. Public Health 28: 357-366.  https://doi.org/10.1007/s10389-019-01021-3
  62. Allais L, Kerckhof FM, Verschuere S, Bracke KR, De Smet R, Laukens D, et al. 2016. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. 18: 1352-1363.  https://doi.org/10.1111/1462-2920.12934
  63. Harakeh S, Angelakis E, Karamitros T, Bachar D, Bahijri S, Ajabnoor G, et al. 2020. Impact of smoking cessation, coffee and bread consumption on the intestinal microbial composition among Saudis: a cross-sectional study. PLoS One 15: e0230895. 
  64. Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, et al. 2020. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat. Commun. 11: 5886. 
  65. Chiu YC, Lee SW, Liu CW, Lin RC, Huang YC, Lan TY, et al. 2021. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. PLoS One 16: e0249944. 
  66. Li N, Yang Z, Liao B, Pan T, Pu J, Hao B, et al. 2020. Chronic exposure to ambient particulate matter induces gut microbial dysbiosis in a rat COPD model. Respir. Res. 21: 271. 
  67. Wang Y, Li N, Li Q, Liu Z, Li Y, Kong J, et al. 2021. Xuanbai chengqi decoction ameliorates pulmonary inflammation via reshaping gut microbiota and rectifying Th17/Treg imbalance in a murine model of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 16: 3317-3335.  https://doi.org/10.2147/COPD.S337181
  68. Tanner L, Single AB. 2020. Animal models reflecting chronic obstructive pulmonary disease and related respiratory disorders: Translating pre-clinical data into clinical relevance. J. Innate. Immun. 12: 203-225.  https://doi.org/10.1159/000502489
  69. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514.  https://doi.org/10.1038/nrgastro.2014.66
  70. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. 2019. Mechanisms of action of probiotics. Adv. Nutr. 10: S49-S66.  https://doi.org/10.1093/advances/nmy063
  71. Mishra B, Reiling S, Zarena D, Wang G. 2017. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr. Opin. Chem. Biol. 38: 87-96.  https://doi.org/10.1016/j.cbpa.2017.03.014
  72. Rose EC, Odle J, Blikslager AT, Ziegler AL. 2021. Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function. Int. J. Mol. Sci. 22: 6729. 
  73. Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Velez E, Perdigon G. 2019. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 74: 115-124.  https://doi.org/10.1159/000496426
  74. Michael DR, Jack AA, Masetti G, Davies TS, Loxley KE, Kerry-Smith J, et al. 2020. A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. Sci. Rep. 10: 4183. 
  75. Tonucci LB, Olbrich Dos Santos KM, Licursi de Oliveira L, Rocha Ribeiro SM, Duarte Martino HS. 2017. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study. Clin. Nutr. 36: 85-92.  https://doi.org/10.1016/j.clnu.2015.11.011
  76. Ballini A, Santacroce L, Cantore S, Bottalico L, Dipalma G, Topi S, et al. 2019. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: a randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets 19: 373-381.  https://doi.org/10.2174/1871530319666181221150352
  77. Turner RB, Woodfolk JA, Borish L, Steinke JW, Patrie JT, Muehling LM, et al. 2017. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection - a randomised controlled trial. Benef. Microbes 8: 207-215.  https://doi.org/10.3920/BM2016.0160
  78. Liu A, Ma T, Xu N, Jin H, Zhao F, Kwok LY, et al. 2021. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9: e0085921. 
  79. Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, et al. 2014. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 9: e87796. 
  80. Carvalho JL, Miranda M, Fialho AK, Castro-Faria-Neto H, Anatriello E, Keller AC, et al. 2020. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One 15: e0225560. 
  81. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1412.  https://doi.org/10.1093/jn/125.6.1401
  82. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. 2010. Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull Funct. Foods. 7: 1-19.  https://doi.org/10.1616/1476-2137.15880
  83. Pujari R, Banerjee G. 2021. Impact of prebiotics on immune response: from the bench to the clinic. Immunol. Cell Biol. 99: 255-273.  https://doi.org/10.1111/imcb.12409
  84. Olveira G, Gonzalez-Molero I. 2016. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol. Nutr. 63: 482-494.  https://doi.org/10.1016/j.endonu.2016.07.006
  85. Wu Z, Mehrabi Nasab E, Arora P, Athari SS. 2022. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J. Transl. Med. 20: 130. 
  86. Luoto R, Ruuskanen O, Waris M, Kalliomaki M, Salminen S, Isolauri E. 2014. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 133: 405-413.  https://doi.org/10.1016/j.jaci.2013.08.020
  87. Kan H, Stevens J, Heiss G, Rose KM, London SJ. 2008. Dietary fiber, lung function, and chronic obstructive pulmonary disease in the atherosclerosis risk in communities study. Am. J. Epidemiol. 167: 570-578.  https://doi.org/10.1093/aje/kwm343
  88. Jang YO, Kim OH, Kim SJ, Lee SH, Yun S, Lim SE, et al. 2021. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism. Sci. Rep. 11: 7008. 
  89. Szmidt MK, Kaluza J, Harris HR, Linden A, Wolk A. 2020. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of women. Eur. J. Nutr. 59: 1869-1879.  https://doi.org/10.1007/s00394-019-02038-w
  90. Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c- patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48: 992-1005.e8.  https://doi.org/10.1016/j.immuni.2018.04.022
  91. Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, et al. 2019. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74: 799-809.  https://doi.org/10.1111/all.13660
  92. Correa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR, et al. 2022. Butyrate: connecting the gut-lung axis to the management of pulmonary disorders. Front. Nutr. 9: 1011732. 
  93. Kabel AM, Omar MS, Elmaaboud MAA. 2016. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress. Int. Immunopharmacol. 39: 335-342.  https://doi.org/10.1016/j.intimp.2016.08.008
  94. Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, de Bruijn MJW, et al. 2020. Butyrate inhibits human mast cell activation via epigenetic regulation of FcepsilonRI-mediated signaling. Allergy 75: 1966-1978.  https://doi.org/10.1111/all.14254
  95. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166.  https://doi.org/10.1038/nm.3444
  96. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320. 
  97. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M. 2013. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145: 946-953.  https://doi.org/10.1053/j.gastro.2013.08.058
  98. Rao K, Safdar N. 2016. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J. Hosp. Med. 11: 56-61. https://doi.org/10.1002/jhm.2449