DOI QR코드

DOI QR Code

Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Salmonella Typhimurium

  • Hyungkeun Song (Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University) ;
  • Eunna Choi (Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University) ;
  • Eun-Jin Lee (Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University)
  • Received : 2023.06.08
  • Accepted : 2023.06.12
  • Published : 2023.09.28

Abstract

Among the AAA+ proteases in bacteria, FtsH is a membrane-bound ATP-dependent metalloprotease, which is known to degrade many membrane proteins as well as some cytoplasmic proteins. In the intracellular pathogen Salmonella enterica serovar Typhimurium, FtsH is responsible for the proteolysis of several proteins including MgtC virulence factor and MgtA/MgtB Mg2+ transporters, the transcription of which is controlled by the PhoP/PhoQ two-component regulatory system. Given that PhoP response regulator itself is a cytoplasmic protein and also degraded by the cytoplasmic ClpAP protease, it seems unlikely that FtsH affects PhoP protein levels. Here we report an unexpected role of the FtsH protease protecting PhoP proteolysis from cytoplasmic ClpAP protease. In FtsH-depleted condition, PhoP protein levels decrease by ClpAP proteolysis, lowering protein levels of PhoP-controlled genes. This suggests that FtsH is required for normal activation of PhoP transcription factor. FtsH does not degrade PhoP protein but directly binds to PhoP, thus sequestering PhoP from ClpAP-mediated proteolysis. FtsH's protective effect on PhoP can be overcome by providing excess ClpP. Because PhoP is required for Salmonella's survival inside macrophages and mouse virulence, these data implicate that FtsH's sequestration of PhoP from ClpAP-mediated proteolysis is a mechanism ensuring the amount of PhoP protein during Salmonella infection.

Keywords

Acknowledgement

We thank Dr. Dongwoo Shin for providing Salmonella protease mutant strains. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning [NRF-2022R1A2B5B02002256, NRF-2022R1A4A1025913, and NRF-2020M3A9H5104235 to E.-J.L.] and a grant from Korea University.

References

  1. Bittner LM, Arends J, Narberhaus F. 2016. Mini review: ATP-dependent proteases in bacteria. Biopolymers 105: 505-517.  https://doi.org/10.1002/bip.22831
  2. Langklotz S, Baumann U, Narberhaus F. 2012. Structure and function of the bacterial AAA protease FtsH. Biochim. Biophys. Acta 1823: 40-48.  https://doi.org/10.1016/j.bbamcr.2011.08.015
  3. Sauer RT, Baker TA. 2011. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80: 587-612.  https://doi.org/10.1146/annurev-biochem-060408-172623
  4. Yeom J, Shao Y, Groisman EA. 2020. Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. Proc. Natl. Acad. Sci. USA 117: 20235-20243.  https://doi.org/10.1073/pnas.2006116117
  5. Alix E, Blanc-Potard AB. 2008. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J. 27: 546-557.  https://doi.org/10.1038/sj.emboj.7601983
  6. Choi E, Lee KY, Shin D. 2012. The MgtR regulatory peptide negatively controls expression of the MgtA Mg2+ transporter in Salmonella enterica serovar Typhimurium. Biochem. Biophys. Res. Commun. 417: 318-323.  https://doi.org/10.1016/j.bbrc.2011.11.107
  7. Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215.  https://doi.org/10.1146/annurev.biochem.69.1.183
  8. Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. 2013. Bacterial Mg2+ homeostasis, transport, and virulence. Annu. Rev. Genet. 47: 625-646.  https://doi.org/10.1146/annurev-genet-051313-051025
  9. Vescovi EG, Soncini FC, Groisman EA. 1996. Mg2+ as an extracellular signal: Environmental regulation of Salmonella virulence. Cell 84: 165-174.  https://doi.org/10.1016/S0092-8674(00)81003-X
  10. Groisman EA. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol. 183: 1835-1842.  https://doi.org/10.1128/JB.183.6.1835-1842.2001
  11. Groisman EA, Duprey A, Choi J. 2021. How the PhoP/PhoQ system controls virulence and Mg(2+) homeostasis: Lessons in signal transduction, pathogenesis, physiology, and evolution. Microbiol. Mol. Biol. Rev. 85: e0017620. 
  12. Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG. 1989. Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J. Bacteriol. 171: 4742-4751.  https://doi.org/10.1128/jb.171.9.4742-4751.1989
  13. Blanc-Potard AB, Groisman EA. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16: 5376-5385.  https://doi.org/10.1093/emboj/16.17.5376
  14. Yeom J, Wayne KJ, Groisman EA. 2017. Sequestration from protease adaptor confers differential stability to protease substrate. Mol. Cell 66: 234-246 e235. 
  15. Gottesman S. 2003. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19: 565-587.  https://doi.org/10.1146/annurev.cellbio.19.110701.153228
  16. Choi E, Kwon K, Lee EJ. 2015. A single amino acid of a Salmonella virulence protein contributes to pathogenicity by protecting from the FtsH-mediated proteolysis. FEBS Lett. 589: 1346-1351.  https://doi.org/10.1016/j.febslet.2015.04.014
  17. Choi J, Schmukler M, Groisman EA. 2022. Degradation of gene silencer is essential for expression of foreign genes and bacterial colonization of the mammalian gut. Proc. Natl. Acad. Sci. USA 119: e2210239119. 
  18. Tao T, Snavely MD, Farr SG, Maguire ME. 1995. Magnesium transport in Salmonella typhimurium: mgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. J. Bacteriol. 177: 2654-2662.  https://doi.org/10.1128/jb.177.10.2654-2662.1995
  19. Battesti A, Gottesman S. 2013. Roles of adaptor proteins in regulation of bacterial proteolysis. Curr. Opin. Microbiol. 16: 140-147.  https://doi.org/10.1016/j.mib.2013.01.002
  20. Bougdour A, Wickner S, Gottesman S. 2006. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev. 20: 884-897.  https://doi.org/10.1101/gad.1400306
  21. Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. 2006. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc. Natl. Acad. Sci. USA 103: 13503-13508.  https://doi.org/10.1073/pnas.0606026103
  22. Guo MS, Gross CA. 2014. Stress-induced remodeling of the bacterial proteome. Curr. Biol. 24: R424-434.  https://doi.org/10.1016/j.cub.2014.03.023
  23. Fields PI, Swanson RV, Haidaris CG, Heffron F. 1986. Mutants of Salmonella-Typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83: 5189-5193.  https://doi.org/10.1073/pnas.83.14.5189
  24. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.  https://doi.org/10.1073/pnas.120163297
  25. Davis RW, Botstein D, Roth JR, Cold Spring Harbor Laboratory. 1980. Advanced bacterial genetics, pp. Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 
  26. Snavely MD, Miller CG, Maguire ME. 1991. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J. Biol. Chem. 266: 815-823.  https://doi.org/10.1016/S0021-9258(17)35246-8
  27. Lee EJ, Groisman EA. 2010. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol. Microbiol. 76: 1020-1033. https://doi.org/10.1111/j.1365-2958.2010.07161.x