DOI QR코드

DOI QR Code

안정화제로 사용된 황산칼슘비료의 물리적 형태에 따른 토양 비소 및 수은의 안정화와 식물체 전이특성

Transfer of Arsenic and Mercury from Stabilized Farmland Soil to Lettuce using Calcium Sulfate Fertilizer with Different Physical Properties as a Stabilizing Agent

  • 고일하 (환경기술정책연구원 (NeLab)) ;
  • 권요셉 (환경기술정책연구원 (NeLab)) ;
  • 이민현 (환경기술정책연구원 (NeLab)) ;
  • 김정은 (환경기술정책연구원 (NeLab)) ;
  • 박소영 (환경기술정책연구원 (NeLab)) ;
  • 고주인 (한국광해광업공단 기술연구원) ;
  • 지원현 (호서대학교 일반대학원 에너지기후환경융합기술학과 )
  • Il-Ha Koh (National Environment Lab. (NeLab)) ;
  • Yo Seb Kwon (National Environment Lab. (NeLab)) ;
  • Min-Hyeon Lee (National Environment Lab. (NeLab)) ;
  • Jung-Eun Kim (National Environment Lab. (NeLab)) ;
  • So-Young Park (National Environment Lab. (NeLab)) ;
  • Ju In Ko (Technology Research & Development Institute, Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Won Hyun Ji (Department of Energy & Climate Environment Fusion Technology, Graduate School, Hoseo University)
  • 투고 : 2023.07.19
  • 심사 : 2023.10.11
  • 발행 : 2023.10.30

초록

본 연구에서는 토양 내 비소 및 수은의 안정화제로 황산칼슘비료의 적용 가능성을 검토하였다. 아울러 황산칼슘비료의 물리적 특성(입자상, 미분상, 용액상)에 따른 비소 및 수은의 안정화 특성을 상추 재배 포트실험으로 비교?검토하였다. 34일 간의 상추재배를 통해 확인한 비소 및 수은의 전이감소 효과는 대체적으로 70% 이상인 것으로 나타나 안정화제로서의 적용성을 확인하였다. 다만, 용액상 안정화제 처리조건에서 성장한 상추의 생체량은 대조구의 46% 수준으로 가장 낮았는데, 이는 안정화제로부터 유래된 영양물질의 유효도가 극단적으로 높아 오히려 식물체 성장을 저해한 것으로 판단되었다. 토양 내 비소 및 수은의 분획특성 확인결과 수은에서만 존재형태의 변화가 크게 나타났다. 수은은 안정화 처리된 토양에서 원소수은의 감소와 잔류형/황화물 형태의 증가가 확인되었는데, 이러한 경향은 용액상 > 미분상 > 입자상의 순서로 나타났다. 본 연구를 통해 대형 교반장비의 진입이 어려운 농경지에서는 용액상 처리제의 살포만으로 안정화 효과를 얻을 수 있음을 확인하였다. 다만, 높은 영양물질 유효도로 인해 염해토양의 특성을 보일 수 있으므로, 투여량 조절을 통해 농작물 위해를 사전 제어할 필요가 있다.

In this study, we investigated the feasibility of calcium sulfate fertilizer as a stabilizing agent for As and Hg contaminated farmland soil and its stabilization characteristics in 3 different physical forms (particulate, powder, and solution) through a pot experiment including 34 days of lettuce growth. As and Hg contents of the lettuce grown in the stabilized soils were decreased by at least 70%. However the lettuce yield of the soil stabilized with the solution agent was decreased by 46% due to the overabundance of the nutrients from the solution agent. Thus, if a solution-type agent is planned for agricultural farmland soil stabilization, additional tests for optimal dosage are needed to preserve vegetation growth. In Hg fractionation, a lower concentration of elemental fractions and a higher concentration of residual/sulfide fractions were identified in the soils stabilized with the solution, powder, and pariculate agents in descending order while there were no significant changes in As fractionation. Overall results suggest that calcium sulfate fertilizer can be used as a stabilizing agent, and a solution-type agent could be used when the operation of heavy machinery for the soil stabilization process is impossible.

키워드

과제정보

본 연구는 2022년 한국광해광업공단으로부터 기술개발사업비를 지원받아 수행된 것임.

참고문헌

  1. Beesley, L., Inneh, O.S., Norton, G.J., Moreno-Jimenez, E., Pardo, T., Clemente, R. and Dawson, J.J.C. (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut., v.186, p.195-202. doi: 10.1016/j.envpol.2013.11.026 
  2. Bothe, J.V. and Brown, P.W. (1999) Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol., v.21, p.3806-3811. doi: 10.1021/es980998m 
  3. Brady, N.C. and Weil, N.N. (2014) Elements of the nature and properties of soils. Person Education Limited, p.361-364. 
  4. Clifford, M.J., Hilson, G.M. and Hodson, M.E. (2010) Tin and mercury. In Hooda, P.S.(ed.) Trace elements in soils, John Wiley and Sons, Ltd., 506p. doi: 10.1002/9781444319477.ch21 
  5. Cundy, A.B., Hopkinson, L. and Whitby, R.L.D. (2008) Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ., v.400, p.42-51. doi: 10.1016/j.scitotenv.2008.07.002 
  6. Enaime, G., Bacaoui, A., Yaacoubi, A. and Lubken, M. (2020) Biochar for wastewater treatment-Conversion technologies and applications. Appl. Sci., v.10, p.1-29. doi: 10.3390/app10103492 
  7. Fellet, G., Marchiol, L., Vedove G.D. and Peressotti, A. (2011) Application of biochar on mine tailings: Effects and perspectives for land reclamation, Chemosphere, v.83, p.1262-1267. doi: 10.1016/j.chemosphere.2011.03.053 
  8. He, H., Tam, N.F.Y., Yao, A., Qiu, R., Li, W.C. and Ye, Z. (2017) Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere, v.189, p.247-254. doi: 10.1016/j.chemosphere.2017.09.069 
  9. Huang, M., Zhu, Y., Li, Z., Huang, B., Luo, N., Liu, C. and Zeng, G. (2016) Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies, Water Air Soil Pollut., v.227, p.359. doi: 10.1007/s11270-016-3068-8 
  10. Jung, M.C., Kim, N.K. and Kim, H.K. (2009) Evaluation of environmental contamination and chemical speciation of mercury in tailings and soils from abandoned metal mines in Korea. J. Korean Society for Geosystem, v.46, p.228-238. 
  11. Kabata-Pendias, A. (2011) Trace elements in soils and plants. CRC Press, Boca Raton, London, New York, 307p. 
  12. Kim, M.S., Min, H.G., Lee, B.J., Chang, S.I., Kim, J.G., Koo, N.I., Park, J.S. and Bak, (2014) The applicability of the acid mine drainage sludge in the heavy metal stabilization in soils. Korean J. Environ. Agric., v.33, p.78-85. doi: 10.5338/KJEA.2014.33.2.78 
  13. Kim, M.S., Park, M.J., Yang, J.H. and Lee, S.H. (2019) Human health risk assessment for toxic trace elements in the Yaro mine and reclamation options. Int. J. Environ. Res. Public Health, v.16, 5077. doi: 10.3390/ijerph16245077 
  14. Koh, I.H., Kwon, Y.S., Moon, D.H., Ko, J.I. and Ji, W.H. (2020) A feasibility assessment of CMDS (coal mine drainage sludge) in the stabilization of mercury contaminated soil in mine area. J. Soil Groundwater Environ., v.25, p.53-61. doi: 10.7857/JSGE.2020.25.1.053 
  15. Ko, M.S., Kim, J.Y., Park, H.S. and Kim, K.W. (2015) Field assessment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge. J. Clean Prod., v.108, p.1073-1080. doi: 10.1016/j.jclepro.2015.06.076 
  16. KOMIR(Korea Mine rehabilitation and Mineral Resources Corp.) (2022) Guidebook : Mine Rehabilitation Technology in Korea.
  17. Kumar, A., Bhattacharya, T., Shaikh, W.A., Chakraborty, S., Owens, G. and Naushad, M. (2022) Valorization of fruit waste-based biochar for arsenic removal in soils, Environ. Res., v.213, 113710. doi: 10.1016/j.envres.2022.113710 
  18. Kumpiene, J., Lagerkvist, A. and Maurice, C. (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - a review. Waste Manage., v.28, p.215-225. doi: 10.1016/j.wasman.2006.12.012 
  19. Lechler, P.J., Miller, J.R., Hsu, L.C. and Desilets, M.O. (1997) Mercury mobility at the Carson river superfund site, west-central Nevada, USA: interpretation of mercury speciation data in mill tailings, soils, and sediments. J. Geochem. Explor., v.58, p.259-267. doi: 10.1016/S0375-6742(96)00071-4 
  20. Lee, J.M. (2013) Vegetable sciences crop details. Hyangmoonsa, 334p. 
  21. Lee, M.H. and Jeon, J.H. (2010) Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone. Econ. Environ. Geol., v.43, p.305-314. 
  22. Lim, J.E., Moon, D.H., Kim, W.R., Yang, J.E., Lee, S.S. and Ok, Y.S. (2015) Heavy metal stabilization in soils using waste resources - A critical review. J. Appl. Biol. Chem. v.58, p.157-174. doi: 10.3839/jabc.2015.027 
  23. MFDS (Korea Ministry of Food and Drug Safety) (2022) Korean Food Standards Codex. 
  24. Moon, D.H., Dermtas, D. and Menounou, N. (2004) Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci. Total Environ., v.330, p.171-185.  https://doi.org/10.1016/j.scitotenv.2004.03.016
  25. Moon, D.H., Wazne, M., Cheong, K.H., Chang, Y.Y., Baek, KT., Ok, Y.S. and Park, J.H. (2015) Statbilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environ. Sci. Pollut. Res., v.22, p.11162-11169. doi: 10.1007/s11356-015-4612-6 
  26. NIAST(National Institute of Agricultural Science and Technology) (2000) Methods for Soil and Plant Analysis. 
  27. NIER(National Institute of Environmental Research) (2022) Korea standard methods for soil analysis. 
  28. Park, J.D. and Zheng, W. (2012) Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health, v.45, p.344-352. doi: 10.3961/jpmph.2012.45.6.344 
  29. Piao, H. and Bishop, P.L. (2006) Stabilization of mercury-containing wastes using sulfide. Evviron. Pollut., v.139, p.498-506. doi: 10.1016/j.envpol.2005.06.005 
  30. Pierzynski, G.M., Sims, J.T. and Vance, G.F. (1994) Soils and environmental quality. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, 181p. 
  31. Saniewska, D. and Beldowska, M. (2017) Mercury fractionation in soil and sediment samples using thermo-desorption method. Talanta, v.168, p.152-161. doi: 10.1016/j.talanta.2017.03.026 
  32. Tack, F.M.G. and Bardos, P. (2020) Overview of soil and groundwater remediation. In Ok, Y.S., Rinklebe, J., Hou, D., Tsang, D.C.W., and Tack, F.M.G. (ed) Soil and Groundwater Remediation Technologies, CRC Press, 7p. 
  33. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E. and Adriano, D.C. (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta, v.436, p.309-323. doi: 10.1016/S0003-2670(01)00924-2 
  34. Xu, J., Bravo, A.G., Lagerkvist, A., Bertilsson, S., Sjoblom, R. and Kumpiene, J. (2015) Source and remediation techniques for mercury contaminated soil. Environ. Int., v.74, p.42-53. doi: 10.1016/j.envint.2014.09.007 
  35. Zhu, X., Qi, X., WAng, H., Shi, Y., Liao, T., Li, Y., Liu, C. and Wang, X. (2014) Characterization of high-arsenic sludge in copper metallurgy plant. In Carpenter, J.S., Bai, C., Hwang, J.Y., Ikhmayies, S., Li, B., Monteiro, S.N., Peng, Z., and Zhang, M.(ed.) Characterization of minerals, metals, and materials 2014. John Wiley & Sons, Inc., p.173-184. doi: 10.1002/9781118888056.ch21