DOI QR코드

DOI QR Code

사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel

  • 오유나 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 신대현 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 김단우 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 전소영 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 김선옥 (부경대학교 에너지자원공학과 ) ;
  • 이민희 (부경대학교 지구환경시스템과학부 환경지질과학전공)
  • Yuna Oh (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Daehyun Shin (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Danu Kim (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Soyoung Jeon (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Seon-ok Kim (Department of Energy Resources Engineering, Pukyong National University ) ;
  • Minhee Lee (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University)
  • 투고 : 2023.07.26
  • 심사 : 2023.10.17
  • 발행 : 2023.10.30

초록

사용후핵연료(Spent nuclear fuel; SNF) 심지층 처분장의 완충재 소재로서 WRK (waste repository Korea) 벤토나이트가 적합한 지를 평가하기 위하여, 대표적인 방사성 핵종인 U (uranium)에 대한 WRK 벤토나이트의 흡/탈착 특성과 흡착 기작을 규명하는 다양한 분석, 흡/탈착 실내 실험, 동역학 흡착 모델링을 다양한 pH 조건에서 수행하였다. 다양한 특성 분석 결과, 주성분은 Ca-몬모릴로나이트이며, U 흡착 능력이 뛰어난 광물학적·구조적 특징들을 가지고 있었다. WRK 벤토나이트의 U 흡착 효율 및 탈착율을 규명하기 위한 흡/탈착 실험 결과, pH 5, 6, 10, 11 조건에서 WRK 벤토나이트와 U 오염수(1 mg/L)가 낮은 비율(2 g/L)로 혼합되었음에도 불구하고 높은 U 흡착 효율(>74%)과 낮은 U 탈착율(<14%)을 보였으며, 이는 WRK 벤토나이트가 SNF 처분장에서 U 거동을 제한하는 완충재 소재로서 적절하게 사용될 수 있음을 의미한다. pH 3과 7 조건에서는 상대적으로 낮은 U 흡착 효율(<45%)이 나타났으며, 이는 U가 용액의 pH 조건에 따라 다양한 형태로 존재하며, 존재 형태에 따라 상이한 U 흡착 기작을 가지기 때문으로 판단된다. 본 연구 실험 결과와 선행연구를 바탕으로 WRK 벤토나이트의 주요 화학적 U 흡착 기작을 pH 범위에 따라 용액 내 U의 존재 형태에 근거하여 설명하였다. pH 3 이하에서 주로 UO22+ 형태로 존재하는 U는 벤토나이트 표면의 Si-O 또는 Al-O(OH)와의 정전기적 인력(예: 이온 결합)에 의해 흡착되기 때문에 pH가 감소할수록 음전하 표면이 약해지는 WRK 벤토나이트 특성에 의해 비교적 낮은 U 흡착 효율이 나타났다. pH 7 이상의 알칼리성 조건에서 U는 음이온 U-수산화 복합체(UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7- 등)로 존재하며 비교적 높은 흡착 효율이 나타내는데, 이들은 벤토나이트에 포함된 Si-O 또는 Al-O(OH)의 산소원자를 공유하거나 리간드 교환에 의해 새로운 U-복합체가 형성되어 흡착되거나 수산화물 형태의 공침(co-precipitation)에 의해 벤토나이트에 고정되기 때문이다. pH 7의 중성 조건에서는 pH 5와 6보다 오히려 낮은 U 흡착 효율(42%)이 나타났는데, 이러한 결과는 용액 내 존재하는 탄산염(carbonate)에 의해 U가 U-수산화 복합체보다 용해도가 높은 U-탄산염 복합체로 존재하는 경우 가능하다. 연구 결과 pH를 약산성 또는 염기성 조건으로 유지하거나 용액 내 존재하는 탄산염을 제한함으로써 WRK 벤토나이트의 U 흡착 효율을 높일 수 있는 것으로 나타났다.

This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(No.2021M2E1A1085202)을 받아 수행되었습니다. 본 논문을 심사하신 익명의 심사위원께 감사드립니다.

참고문헌

  1. Allen, P.G., Bucher, J.J., Shuh, D.K., Edelstein, N.M. and Reich, T. (1997) Investigation of aquo and chloro complexes of UO22+, NpO2+, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorganic Chemistry, v.36(21), p.4676-4683. doi: 10.1021/ic970502m
  2. Anirudhan, T.S. and Ramachandran, M. (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, v.95, p.215-225. doi: 10.1016/j.psep.2015.03.003
  3. Bachmaf, S., Planer-Friedrich, B. and Merkel, B.J. (2008) Effect of sulfate, carbonate, and phosphate on the uranium (VI) sorption behavior onto bentonite. Radiochimica Acta, v.96(6), p.359-366. doi: 1044.1524/ract.2008.1496 1044.1524/ract.2008.1496
  4. Bradbury, M. and Baeyens, B. (2003) Near field sorption data bases for compacted MX-80 bentonite for performance assessment of a high-level radioactive waste repository in Opalinus clay host rock. Technical Report No. PSI-03-07, 142p.
  5. Brix, K., Baur, S., Haben, A. and Kautenburger, R. (2021) Building the bridge between U (VI) and Ca-bentonite-Influence of concentration, ionic strength, pH, clay composition and competing ions. Chemosphere, v.285, p.131445. doi: 10.1016/j.chemosphere.2021.131445
  6. Chaparro, M.C., Finck, N., Metz, V. and Geckeis, H. (2021) Reactive transport modelling of the long-term interaction between carbon steel and MX-80 bentonite at 25℃. Minerals, v.11(11), p.1272. doi: 10.3390/min11111272
  7. Cui, S.L., Zhang, H.Y. and Zhang, M. (2012) Swelling characteristics of compacted GMZ bentonite-sand mixtures as a buffer/backfill material in China. Engineering Geology, v.141-142, p.65-73. doi: 10.1016/j.enggeo.2012.05.004
  8. Cui, L.Y., Ye, W.M., Wang, Q., Chen, Y.G., Chen, B. and Cui, Y.J. (2021) Influence of cyclic thermal processes on gas migration in saturated GMZ01 bentonite. Journal of Natural Gas Science and Engineering, v.88, p.103872. doi: 10.1016/j.jngse.2021.103872
  9. Davis, J. A., Meece, D. E., Kohler, M. and Curtis, G. P. (2004) Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochimica et Cosmochimica Acta, v.68(18), p.3621-3641. doi: 10.1016/j.gca.2004.03.003
  10. Delos, A., Trinchero, P., Richard, L., Molinero, J., Dentz, M. and Pitkanen, P. (2010) Quantitative assessment of deep gas migration in Fennoscandian sites. Report No. SKB-R-10-61, 52p.
  11. Ewing, R.C. (2015) Long-term storage of spent nuclear fuel. Nature Materials, v.14(3), p.252-257. doi: 10.1038/nmat4226
  12. Fernandes, J.V., Rodrigues, A.M., Menezes, R.R. and Neves, G.D.A. (2020) Adsorption of anionic dye on the acid-functionalized bentonite. Materials, v.13(16), p.3600. doi: 10.3390/ma13163600
  13. Hayati-Ashtiani, M. (2011) Characterization of nano-porous bentonite (montmorillonite) particles using FTIR and BET-BJH analyses. Particle & Particle Systems Characterization, v.28(3-4), p.71-76. doi: 10.1002/ppsc.201100030
  14. He, Y., Ye, W.M., Chen, Y.G. and Cui, Y.J. (2019) Effects of K+ solutions on swelling behavior of compacted GMZ bentonite. Engineering Geology, v.249, p.241-248. doi: 10.1016/j.enggeo.2018.12.020
  15. Hu, J., Xu, D., Chen, L. and Wang, X. (2009) Characterization of MX-80 bentonite and its sorption of radionickel in the presence of humic and fulvic acids. Journal of radioanalytical and nuclear chemistry, v.279, p.701-708. doi: 10.1007/s10967-007-7252-6
  16. IAEA (2003) Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes. International Atomic Energy Agency, Technical Reports Series, No. 413.
  17. Kale, R.C. and Ravi, K. (2021) A review on the impact of thermal history on compacted bentonite in the context of nuclear waste management. Environmental Technology & Innovation, v.23, p.101728. doi: 10.1016/j.eti.2021.101728
  18. Karnland, O. (2010) Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository. Technical Report No. SKB-TR-10-60, 25p.
  19. Kobayashi, I., Owada, H., Ishii, T. and Iizuka, A. (2017) Evaluation of specific surface area of bentonite-engineered barriers for Kozeny-Carman law. Soils and Foundations, v.57(5), p.683-697. doi: 10.1016/j.sandf.2017.08.001
  20. Komine, H. (2004) Simplified evaluation for swelling characteristics of bentonites. Engineering geology, v.71(3-4), p.265-279. doi: 10.1016/s0013-7952(03)00140-6
  21. Kul, A.R. and Koyuncu, H. (2010) Adsorption of Pb (II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study. Journal of Hazardous Materials, v.179(1-3), p.332-339. doi: 10.1016/j.jhazmat.2010.03.009
  22. Lee, J.O., Lim, J.G., Kang, I.M. and Kwon, S. (2012) Swelling pressures of compacted Ca-bentonite. Engineering Geology, v.129-130, p.20-26. doi: 10.1016/j.enggeo.2012.01.005
  23. Lee, C.P., Tsai, S.C., Wu, M.C. and Tsai, T.L. (2018) A study on removal of Cs and Sr from aqueous solution by bentonite-alginate microcapsules. Journal of Radioanalytical and Nuclear Chemistry, v.318(3), p.2381-2387. doi: 10.1007/s10967-018-6290-6
  24. Lee, C.P., Hu, Y., Chen, D., Tien, N.C., Tsai, S.C., Shi, Y., Lee, I.H. and Ni, C.F. (2021) A Statistical Evaluation to Compare and Analyze Estimations of the Diffusion Coefficient of Pertechnetate (99TcO4-) in Compacted Bentonite. Minerals, v.11(10), p.1075. doi: 10.3390/min11101075
  25. Li, S., Wang, X., Huang, Z., Du, L., Tan, Z., Fu, Y. and Wang, X. (2016) Sorption and desorption of uranium (VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. Journal of Radioanalytical and Nuclear Chemistry, v.308(3), p.877-886. doi: 10.1007/s10967-015-4513-7
  26. Li, Z., Su, G., Zheng, Q. and Nguyen, T.S. (2020) A dual-porosity model for the study of chemical effects on the swelling behaviour of MX-80 bentonite. Acta Geotechnica, v.15(3), p.635-653. doi: 10.1007/s11440-019-00762-5
  27. Liu, J., Zhao, C., Tu, H., Yang, J., Li, F., Li, D., Liao, J., Yang, Y., Tang, J. and Liu, N. (2017) U (VI) adsorption onto cetyltrimethylammonium bromide modified bentonite in the presence of U (VI)-CO3 complexes. Applied Clay Science, v.135, p.64-74. doi: 10.1016/j.clay.2016.09.005
  28. Liu, Z., Ye, W., Cui, Y., Zhu, H., Wang, Q. and Chen, Y. (2022) An Empirical Swelling Pressure Kinetics Model for Bentonite and Bentonite-Based Materials Hydrated under Constant Volume Conditions. International Journal of Geomechanics, v.22(4). doi: 10.1061/(ASCE)GM.1943-5622.0002293
  29. Liu, H., Fu, T., Sarwar, M.T. and Yang, H. (2023) Recent progress in radionuclides adsorption by bentonite-based materials as ideal adsorbents and buffer/backfill materials. Applied Clay Science, v.232, p.106796. doi: 10.1016/j.clay.2022.106796
  30. Madejova, J., Janek, M., Komadel, P., Herbert, H.J. and Moog, H.C. (2002) FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Applied Clay Science, v.20(6), p.255-271. doi: 10.1016/s0169-1317(01)00067-9
  31. Majdan, M., Pikus, S., Gajowiak, A., Gladysz-Plaska, A., Krzyzanowska, H., Zuk, J. and Bujacka, M. (2010) Characterization of uranium (VI) sorption by organobentonite. Applied Surface Science, v.256(17), p.5416-5421. doi: 10.1016/j.apsusc.2009.12.123
  32. Matusewicz, M. and Olin, M. (2019) Comparison of microstructural features of three compacted and water-saturated swelling clays: MX-80 bentonite and Na-and Ca-purified bentonite. Clay Minerals, v.54(1), p.75-81. doi: 10.1180/clm.2019.1
  33. Mayordomo, N., Degueldre, C., Alonso, U. and Missana, T. (2016) Size distribution of FEBEX bentonite colloids upon fast disaggregation in low-ionic strength water. Clay Minerals, v.51(2), p.213-222. doi: 10.1180/claymin.2016.051.2.08
  34. Mota-Heredia, C., Cuevas, J., Ruiz, A.I., Ortega, A., Torres, E., Turrero, M.J. and Fernandez, R. (2023) Geochemical interactions at the steel-bentonite interface caused by a hydrothermal gradient. Applied Clay Science, v.240, p.106984. doi: 10.1016/j.clay.2023.106984
  35. Muyzer, G. and Stams, A.J. (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature reviews microbiology, v.6(6), p.441-454. doi: 10.1038/nrmicro1892
  36. Niu, M., Li, G., Cao, L., Wang, X. and Wang, W. (2020) Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption. Journal of Cleaner Production, v.256, p.120700. doi: 10.1016/j.jclepro.2020.120700
  37. Ohazuruike, L. and Lee, K.J. (2023) A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems. Nuclear Engineering and Technology, v.55(4), p.1495-1506. doi: 10.1016/j.net.2023.01.007
  38. Pedersen, O., Colmer, T.D. and Sand-Jensen, K. (2013) Underwater photosynthesis of submerged plants-recent advances and methods. Frontiers in Plant Science, v.4, p.140 doi: 10.3389/fpls.2013.00140
  39. Philipp, T., Azzam, S.S.A., Rossberg, A., Huittinen, N., Schmeide, K. and Stumpf, T. (2019) U (VI) sorption on Ca-bentonite at (hyper) alkaline conditions-Spectroscopic investigations of retention mechanisms. Science of The Total Environment, v.676, p.469-481. doi: 10.1016/j.scitotenv.2019.04.274
  40. Sakamoto, H., Shibata, M., Owada, H., Kaneko, M., Kuno, Y. and Asano, H. (2007) Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions. Physics and Chemistry of the Earth, Parts A/B/C, v.32(1-7), p.311-319. doi: 10.1016/j.pce.2005.10.004
  41. Sasagawa, T., Chida, T. and Niibori, Y. 2018, Deposition rate of supersaturated silicic acid on Na-type bentonite as a backfilled material in the geological disposal. Applied Geochemistry, v.98, p.377-382. doi: 10.1016/j.apgeochem.2018.08.007
  42. Tyupina, E.A., Kozlov, P.P. and Krupskaya, V.V. (2023) Application of Cement-Based Materials as a Component of an Engineered Barrier System at Geological Disposal Facilities for Radioactive Waste-A Review. Energies, v.16(2), p.605. doi: 10.3390/en16020605
  43. Veliscek-Carolan, J. (2016) Separation of actinides from spent nuclear fuel: A review. Journal of Hazardous Materials, v.318, p.266-281. doi: 10.1016/j.jhazmat.2016.07.027
  44. Viani, A., Gualtieri, A.F. and Artioli, G. (2002) The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, v.87(7), p.966-975. doi: 10.2138/am-2002-0720
  45. Villar, M.V. (2007) Water retention of two natural compacted bentonites. Clays and Clay Minerals, v.55(3), p.311-322. doi: 10.1346/ccmn.2007.0550307
  46. Wang, X.K., Chen, C.L., Zhou, X., Tan, X.L. and Hu, W.P. (2005) Diffusion and sorption of U (VI) in compacted bentonite studied by a capillary method. Radiochimica Acta, v.93(5), p.273-278. doi: 10.1524/ract.93.5.273.64279
  47. Wang, J., Chen, Z., Shao, D., Li, Y., Xu, Z., Cheng, C., Asiri, A.M., Marwani, H.M. and Hu, S. (2017) Adsorption of U (VI) on bentonite in simulation environmental conditions. Journal of Molecular Liquids, v.242, p.678-684. doi: 10.1016/j.molliq.2017.07.048
  48. Wang, J. and Guo, X. (2020) Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, v.390, p.122156. doi: 10.1016/j.jhazmat.2020.122156
  49. Wentong, F. and Bingkun, L. (1990) Adsorption of uranyl complex ions on hydrous titanium oxide (HTO)-II. Infrared spectrum investigation. Acta Oceanologica Sinica, v.9(1), p.91-96. doi: http://aosocean.com/en/article/id/19900109 109
  50. Yoo, M., Choi, H.J., Lee, M.S. and Lee, S.Y. (2016) Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository. Journal of Nuclear Fuel Cycle and Waste Technology, v.14(2), p.135-147. doi: 10.7733/jnfcwt.2016.14.2.135
  51. Zachara, J.M. and McKinley, J.P. (1993) Influence of hydrolysis on the sorption of metal cations by smectites: Importance of edge coordination reactions. Aquatic Sciences, v.55(4), p.250-261. doi: 10.1007/bf00877270
  52. Zheng, Z., Tokunaga, T.K. and Wan, J. (2003) Influence of calcium carbonate on U (VI) sorption to soils. Environmental Science & Technology, v.37(24), p.5603-5608. doi: 10.1021/es0304897
  53. Zheng, H., Liu, D., Zheng, Y., Liang, S. and Liu, Z. (2009) Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials, v.167(1-3), p.141-147. doi: 10.1016/j.jhazmat.2008.12.093
  54. Zong, P., Wu, X., Gou, J., Lei, X., Liu, D. and Deng, H. (2015) Immobilization and recovery of uranium (VI) using Na-bentonite from aqueous medium: equilibrium, kinetics and thermodynamics studies. Journal of Molecular Liquids, v.209, p.358-366. doi: 10.1016/j.molliq.2015.05.052