DOI QR코드

DOI QR Code

마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean

  • 허준태 (연세대학교 지구시스템과학과) ;
  • 윤서희 (연세대학교 지구시스템과학과) ;
  • 김종욱 (한국해양과학기술원 대양자원연구부) ;
  • 고영탁 (한국해양과학기술원 대양자원연구부) ;
  • 이용재 (연세대학교 지구시스템과학과)
  • Junte Heo (Department of Earth System Sciences, Yonsei University) ;
  • Seohee Yun (Department of Earth System Sciences, Yonsei University) ;
  • Jonguk Kim (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology) ;
  • Young Tak Ko (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology) ;
  • Yongjae Lee (Department of Earth System Sciences, Yonsei University)
  • 투고 : 2023.06.10
  • 심사 : 2023.10.04
  • 발행 : 2023.10.30

초록

본 연구에서는 2021년 WP21 탐사를 통해 수집한 마리아나 해구 주변 해양퇴적물(WP21GPC04)에 대한 깊이 별 원소 분포 및 광물 구성에 대한 분석을 수행하였다. 마이크로 X선 형광법(μ-XRF)을 통해 분석된 WP21GPC04 해양 퇴적물의 평균 화학조성은 깊이에 따른 특징적인 변화 없이 평균 SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%를 보이며, 이를 Mariana pelagic clay와 평균 해양 퇴적물의 원소 분포인 GLOSS (global subducting sediment)의 성분과 비교하였다. 방사광 X선 회절법(Synchrotron-XRD)을 이용하여 분석된 광물 구성은 깊이에 따라 다소 차이가 있음을 확인하였다. 석영, 운모, 사장석은 모든 깊이에서 확인된 반면 녹니석은 상대적으로 얕은 깊이에서만 확인되었고, 제올라이트 계열인 필립사이트와 휼란다이트는 퇴적 깊이에 따라 점진적인 함량의 변화를 보였다. 이는 해양 퇴적물의 퇴적 시기에 따른 환경에 변화가 있었거나 유사한 상 안정성에 의한 공생관계로 해석될 수 있다. 본 연구 결과는 서태평양 마리아나 해구 주변의 퇴적 환경 변화와 섭입하는 해양 퇴적물의 상 분포 및 거동에 따른 섭입대 특성 연구에 대한 기초 자료를 제공할 것이다.

This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

키워드

과제정보

본 연구는 한국연구재단 리더연구자 사업(2018R1A3B1052052)의 지원으로 수행되었다. 방사광가속기를 이용한 실험은 포항가속기연구소의 빔타임 지원으로 수행되었다.

참고문헌

  1. Balshaw, K.M. (1982) Clay Mineral Stratigraphy and Related Diagenesis in the Deep Sea Drilling Project Leg 60 Sediments. In Initial Reports of the Deep Sea Drilling Project, 60 U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.60.121.1982
  2. Berger, W.H. (1974) Deep-Sea Sedimentation In The Geology of Continental Margins (pp. 213-241) Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-01141-6_16
  3. Bergman, E.A. and Solomon, S.C. (1988) Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting. J. Geophys. Res., v.93(B8), p.9027. https://doi.org/10.1029/JB093iB08p09027
  4. Bernat, M., Bieri, R.H., Koide, M., Griffin, J.J. and Goldberg, E.D. (1970) Uranium, thorium, potassium and argon in marine phillipsites. Geochim Cosmochim Acta, v.34(10), p.1053-1071. https://doi.org/10.1016/0016-7037(70)90162-6
  5. Chunhui, X., Yonghong, W., Jiwei, T., Xuchen, W. and Yu, X. (2020) Mineral composition and geochemical characteristics of sinking particles in the Challenger Deep, Mariana Trench: Implications for provenance and sedimentary environment. Deep Sea Research Part I: Oceanographic Research Papers, v.157, p.103211. https://doi.org/10.1016/j.dsr.2019.103211
  6. Dutkiewicz, A., Muller, R.D., O'Callaghan, S. and Jonasson, H. (2015) Census of seafloor sediments in the world's ocean Geology, v.43(9), p.795-798. https://doi.org/10.1130/G36883.1
  7. de Pablo, L., Doval, M., La Iglesia, A. and Soriano, J. (2014). CaKc-linoptilolite, KNa-chabazite, KNa-heulandite, KNa-erionite and Na-phillipsite from tuffaceous rocks, Province of the Mesa Central, Mexico. Revista Mexicana de Ciencias Geologicas, v.31(1), p.116-126.
  8. Drits, V.A., Zviagina, B.B., McCarty, D.K. and Salyn, A.L. (2010) Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. American Mineralogist, v.95(2-3), p.348-361. https://doi.org/10.2138/am.2010.3300
  9. Gottardi, G. and Galli, E. (1985). Natural Zeolites. In Clays and Clay Minerals (Vol. 18, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-46518-5
  10. Guggenheim, S. and Zhan, W. (1999) Crystal structures of two partially dehydrated chlorites; the "modified" chlorite structure. American Mineralogist, v.84(9), p.1415-1421. https://doi.org/10.2138/am-1999-0920
  11. Gunter, M.E., Armbruster, T., Kohler, T. and Knowles, C.R. (1994) Crystal structure and optical properties of Na- and Pb-exchanged heulandite-group zeolites. American Mineralogist, v.79(7-8), p.675-682.
  12. Harlow, G.E. (1982) The anorthoclase structures: the effects of temperature and composition. American Mineralogist, v.67(9-10), p.975-996.
  13. Haschke, M. and Boehm, S. (2017) Micro-XRF in Scanning Electron Microscopes (pp. 1-60). https://doi.org/10.1016/bs.aiep.2017.01.001
  14. Hay, R.L. (1986). Geologic Occurrence of Zeolites and Some Associated Minerals (pp. 35-40). https://doi.org/10.1016/S0167-2991(09)60853-3
  15. Heath, G. (1969) Mineralogy of Cenozoic Deep-Sea Sediments from the Equatorial Pacific Ocean. GSA Bulletin, v.80(10), p.1997-2018. https://doi.org/10.1130/0016-7606(1969)80[1997:MOCDSF]2.0.CO;2
  16. Hillier, S. (1978) Chlorite in sediments. In Sedimentology (pp. 195-202) Springer Netherlands. https://doi.org/10.1007/978-1-4020-3609-5_43
  17. Hyeong, K.S., Ju, S.J., et al. (2021). Exploration of new marine biological/genetic resources and rare metal resources in the Area beyond national jurisdiction of the West Pacific.
  18. Hyndman, R.D., Wang, K. and Yamano, M. (1995) Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust. J. Geophys. Res. Solid Earth, v.100(B8), p.15373-15392. https://doi.org/10.1029/95JB00153
  19. Hyndman, R.D., Yamano, M. and Oleskevich, D.A. (1997) The seismogenic zone of subduction thrust faults. The Island Arc., v.6(3), p.244-260. https://doi.org/10.1111/j.1440-1738.1997.tb00175.x
  20. Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.P., Cynn, H., Vogt, T., Kao, C.C. and Mao, H.K. (2017) A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nat. Geosci. https://doi.org/10.1038/s41561-017-0008-1
  21. Kastner, M. (1999) Oceanic minerals: Their origin, nature of their environment, and significance. Proceedings of the National Academy of Sciences, v.96(7), p.3380-3387. https://doi.org/10.1073/pnas.96.7.3380
  22. Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull., v.23(3), p.447-452. https://doi.org/10.1016/0025-5408(88)90019-0
  23. Levien, L., Prewitt, C.T. and Weidner, D.J. (1980) Structure and elastic properties of quartz at pressure. American Mineralogist, v.65(9-10), p.920-930.
  24. Plank, T. and Langmuir, C.H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., v.145(3-4), p.325-394. https://doi.org/10.1016/S0009-2541(97)00150-2
  25. Prescher, C. and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res., v.35(3), p.223-230. https://doi.org/10.1080/08957959.2015.1059835
  26. Restreppo, G.A., Wood, W.T. and Phrampus, B.J. (2020) Oceanic sediment accumulation rates predicted via machine learning algorithm: towards sediment characterization on a global scale. Geo-Marine Letters, v.40(5), p.755-763. https://doi.org/10.1007/s00367-020-00669-1
  27. Sand, L.B. and Mumpton, F.A. (1978) Natural zeolites: occurrence, properties, and use. https://www.osti.gov/biblio/5287003
  28. Steinfink, H. (1962) The crystal structure of the zeolite, phillipsite. Acta Crystallogr., v.15(7), p.644-651. https://doi.org/10.1107/S0365110X62001802
  29. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C. and Hopper, J.R. (2019) GlobSed: Updated Total Sediment Thickness in the World's Oceans Geochemistry, Geophysics, Geosystems, v.20(4), p.1756-1772. https://doi.org/10.1029/2018GC008115
  30. Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr., v.34(2), p.210-213. https://doi.org/10.1107/S0021889801002242
  31. Vitali, F., Gerard Blanc, and Philippe Larque (1995). Zeolite Distribution in Volcaniclastic Deep-sea Sediments from the Tonga Trench Margin (SW Pacific). Clays and Clay Minerals, v.43(1), p.92-104. https://doi.org/10.1346/CCMN.1995.0430111
  32. Walker, D., Verma, P.K., Cranswick, L.M.D., Jones, R.L., Clark, S.M. and Buhre, S. (2004) Halite-sylvite thermoelasticity. American Mineralogist, v.89(1), p.204-210. https://doi.org/10.2138/am-2004-0124