DOI QR코드

DOI QR Code

우라늄광상을 이용한 방사성폐기물 처분 자연유사연구와 우라늄의 지화학적 거동

Natural Analogue Study on the Disposal of Radioactive Waste Using Uranium Deposits and Geochemical Behaviors of Uranium

  • 백민훈 (한국원자력연구원 저장처분기술개발부) ;
  • 주여진 (한국원자력연구원 저장처분기술개발부) ;
  • 정다운 (한국원자력연구원 저장처분기술개발부) ;
  • 류지훈 (한국원자력연구원 저장처분기술개발부)
  • Min-Hoon Baik (Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute) ;
  • YeoJin Ju (Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute) ;
  • Dawoon Jeong (Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute) ;
  • Ji-Hun Ryu (Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute)
  • 투고 : 2023.09.11
  • 심사 : 2023.10.16
  • 발행 : 2023.10.30

초록

본 연구에서는 고준위방사성폐기물 처분안전성 입증 및 신뢰성 향상을 위한 처분자연유사연구의 역할과 중요성을 개괄적으로 조사하였다. 아울러 지하 처분환경에서 복잡하고 다양한 핵종거동을 규명하고 해석하기 위한 우라늄광상을 이용한 국내외 자연유사연구 동향을 고찰하였다. 또한 국내 옥천변성대 우라늄광상을 포함하는 우라늄광상 지하수와 암석에서의 우라늄의 거동특성과 지질환경에서의 우라늄의 생지화학적 상호작용을 조사하였다. 비록 우라늄광상에서 획득한 우라늄 거동 특성 자료들은 처분안전성평가에 직접적으로 활용하는 데는 많은 제약과 불확실성을 내포하고 있지만, 우라늄광상을 통해 획득한 자료와 정보들은 처분안전성평가와 Safety Case 구축에 정성적으로 또는 일부 정량적으로 활용될 수 있을 것이다.

In this study, we reviewed and summarized comprehensive roles and importance of natural analogue studies for demonstrating the safety and improving the reliability of the safety for the deep geological disposal of high-level radioactive waste. We also investigated domestic and foreign status of natural analogue studies in order to study and substantiate complex and various radionuclide behaviors in subsurface disposal environments. In addition, we investigated and uranium behaviors in groundwater and rock in uranium deposits including domestic uranium deposits in Ogcheon Metamorphic Belt and biogeochemical interactions in geological environments. Although there are many limitations and uncertainties in directly using the information and data for uranium behaviors obtained from uranium deposits in the disposal safety assessment, the information and data can be utilized in the disposal safety assessment and safety case construction both in qualitative and partly quantitative ways.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원을 받아수행된 연구사업으로(No.2021M2E1A1085186) 생산된 것임.

참고문헌

  1. Alloway, B.J. (2013) Chapter 26 Uranium. In: Alloway, B.J. (ed.) Heavy Metals in Soils. Springer, New York, p.565. doi: 10.1007/978-94-007-4470-7_26
  2. Baik, M.H. and Cho, H.R. (2022) Roles of uranyl silicate minerals in the long-term mobility of uranium in fractured granite. J. Radioanal. Nucl. Chem., v.331, p.451-459. doi: 10.1007/s10967-021-08084-1
  3. Baik, M.H., Jung, E.C. and Jeong, J. (2015) Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS. J. Radioanal. Nucl. Chem., v.305, p.589-598. doi: 10.1007/s10967-015-3971-2
  4. Baik, M.H., Ko, N.Y., Jeong, J. and Kim, K.S. (2016) Confidence improvement of disposal safety by development of a safety case for high-level radioactive waste disposal. J. Nucl. Fuel Cycle Waste Technol., v.14(4), p.367-384. doi: 10.7733/jnfcwt.2016.14.4.367
  5. Baik, M.H. and Lee, J.K. (2020) Long-term mobility of uranium in the granitic KURT site using isotopic analysis and sequential chemical extraction. J. Radioanal. Nucl. Chem., v.326, p.1173-1183. doi: 10.1007/s10967-020-07380-6
  6. Baik, M.H., Lee, S.Y. and Roh, Y. (2009) Roles and importance of microbes in the radioactive waste disposal. J. Korean Radioactive Waste Society, v.7(1), p.63-72.
  7. Baik, M.H., Park, T.J., Kim, I.Y. and Choi, K.W. (2013) Research status and roles of natural analogue studies in the radioactive waste disposal. J. Korean Radioactive Waste Soc., v.11(2), p.133-156. doi: 10.7733/jkrws.2013.11.2.133
  8. Baik, M.H. and Ryu, J.H. (2021) Uncertainties and relevance of natural analogue Studies for radionuclide behaviors in HLW disposal. KAERI technical report KAERI/TR-8615/2021. Korea Atomic Energy Research Institute, Daejeon.
  9. Baker, R.J. (2014) Uranium minerals and their relevance to long-term storage of nuclear fuels. Coordination Chem. Rev., v.266- 267, p.123-136. doi: 10.1016/j.ccr.2013.10.004
  10. Behrends, T. and Van Cappellen, P. (2005) Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions. Chem. Geol., v.220(3-4), p.315-327. doi: 10.1016/j.chemgeo.2005.04.007
  11. Bernhard, G., Geipel, G., Brendler, V. and Nitsche, H. (1996) Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta, v.74, p.87-91. doi: 10.1524/ract.1996.74.special-issue.87
  12. Bethke, C.M. and Yeakel, S. (2013) The Geochemist's Workbench Release 9.0: GWB Essentials Guide. Aqueous Solutions LLC, Champaign, Illinois.
  13. Bigeleisen, J. (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J. Am. Chem. Soc., v.118, p.3676-3680. doi: 10.1021/ja954076k
  14. Bruno, J. and Ewing, R. (2006) Spent Nuclear Fuel. Elements, v.2, p.343-349. doi: 10.2113/gselements.2.6.343
  15. Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Can. Mineral., v.43(6), p.1839-1894. doi: 10.2113/gscanmin.43.6.1839
  16. Campbell, K.M., Kukkadapu, R.K., Qafoku, N.P., Peacock, A.D., Lesher, E., Williams, K.H., Bargar, J.R., Wilkins, M.J., Figueroa, L., Ranville, J., Davis, J.A. and Long, P.E. (2012) Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. Appl. Geochem., v.27(8), p.1499-1511. doi: 10.1016/j.apgeochem.2012.04.013
  17. Chapman, N.A., McKinley, I.G., Shea, M.E. and Smellie, J.A.T. (1992) The Pocos de Caldas Project: natural analogues of processes in a radioactive waste repository, Part I. J. Geochem. Explor., v.45, p.1-24. https://doi.org/10.1016/0375-6742(92)90120-W
  18. Chapman, N.A., McKinley, I.G. and Smellie, J.A. (1984) The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste. Eidgenoessisches Inst. fur Reaktorforschung, Wuerenlingen, Switzerland.
  19. Cheng, Y., Holman, H.-Y. and Lin, Z. (2012) Remediation of chromium and uranium contamination by microbial activity. Elements, v.8(2), p.107-112. doi: 10.2113/gselements.8.2.107
  20. Cluzel, D., Cadet, J.P. and Lapierre, H. (1990) Geodynamics of the Ogcheon belt (S. Korea), In Angelier, J. (ed.) Geodynamic Evolution of the Eastern Eurasian Margin, Tectonophysis, v.183, p.41-156. doi: 10.1016/0040-1951(90)90187-d
  21. Cramer, J.J. and Sargent, F.P. (1986) Cigar Lake project: A U-deposit natural analogue. In: Come, B. and Chapman, N.A. (eds.) Natural analogue working group; First meeting, Brussels, November 1985. CEC Nuclear Science and Technology Report, EUR 10315, 216-223. Commission of the European Communities, Luxembourg.
  22. Crespo, M.T., Perez del Villar, L., Quejido, A.J., Sanchez, M., Cozar, M. and Fernandez-Diaz, J.S. (2003) U-series in Fe-U-rich fracture fillings from the oxidised cap of the "Mina Fe" uranium deposit (Spain): implications for processes in a radwaste repository. Appl. Geochem., v.18, p.1251-1266. doi: 10.1016/s0883-2927(02)00248-2
  23. Cui, D. and Eriksen, T. (2000) Fracture-filling minerals as uranium sinks and sources, a natural analogue study at Palmottu, Finland. Radiochim. Acta, v.88, p.751-755. doi: 10.1524/ract.2000.88.9-11.751
  24. Cumberland, S.A., Douglas, G., Grice, K. and Moreau, J.W. (2016) Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth-Science Reviews, v.159, p.160-185. doi: 10.1016/j.earscirev.2016.05.010
  25. Fayek, M. and Brown, J. (2015) Natural and anthropogenic analogues for high-level nuclear waste disposal repositories: A review. A report to the Canadian Nuclear Safety Commission, RSP-310. Canadian Nuclear Safety Commission (CNSC), Ottawa.
  26. Fayek, M., Horita, J. and Ripley, E.M. (2011) The oxygen isotopic composition of uranium minerals: a review. Ore Geol. Rev., p.41(1), p.1-21. doi: 10.1016/j.oregeorev.2011.06.005
  27. Fayek, M., Janeczek, J. and Ewing, R.C. (1997) Mineral chemistry and oxygen isotopic analyses of uraninite, pitchblende and uranium alteration minerals from the Cigar Lake Deposit, Saskatchewan, Canada. Appl. Geochem., v.12, p.549-565. doi: 10.1016/s0883-2927(97)00032-2
  28. Finch, R.J. and Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions. J. Nucl. Mater., v.190, p.133-156. doi: 10.1016/0022-3115(92)90083-w
  29. Gascoyne, M. (1982) Geochemistry of the actinides and their daughters. In Ivanovich, M. and Harmon, R. S. (eds) Uranium series disequilibrium: applications to environmental problems. Clarendon Press, Oxford.
  30. Grenthe, I., Plyssunov, A.V., Runde W.H., Kinings, J.M., Moore, E.E., Gaona, X., Rao, L. and Grambow, B. (2020) Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. OECD Nuclear Energy Agency, Boulogne-Billacourt.
  31. Hobday, D.K. and Galloway, W.E. (1999) Groundwater processes and sedimentary uranium deposits. Hydrogeol. J., v.7(1), p.127-138. doi: 10.1007/s100400050184
  32. Hollinger, P. (1992) Geochemical and isotopic characterisation of the reactor zones. In: von Maravic, H. (ed.) Second Oklo Working Group Meeting. CEC Radioactive Waste Management Series. Commission of the European Communities, Luxembourg.
  33. Horie, K. and Hidaka, H. (2004) Redistribution of U, Pb and REE in association with alteration of uranium minerals from the Koongarra deposit, Northern Territory, Australia. Radiochim. Acta, v.92, p.805-808. doi: 10.1524/ract.92.9.805.55013
  34. IAEA (1989) Natural analogues in performance assessments for the disposal of long-lived radioactive wastes. IAEA Technical Reports, Series No. 304. International Atomic Energy Agency, Vienna.
  35. IAEA (2011) Disposal of Radioactive Waste. IAEA Specific Safety Report, IAEA-SSR-5. International Atomic Energy Agency, Vienna.
  36. IAEA (2012) The Safety Case and Safety Assessment for the Disposal of Radioactive Waste. IAEA Specific Safety Guide, IAEA-SSG-23. International Atomic Energy Agency, Vienna.
  37. IAEA (2016) World Distribution of Uranium Deposits (UDEPO). IAEA TECDOC Series, IAEA-TECDOC-1843. International Atomic Energy Agency, Vienna.
  38. Iwatsuki, T., Arthur, R., Ota, K. and Metcalfe, R. (2004) Solubility constraints on uranium concentrations in groundwaters of the Tono uranium deposit, Japan. Radiochim. Acta, v.92, p.789-796. doi: 10.1524/ract.92.9.789.54986
  39. Janeczek, J., Ewing, R.C., Overby, V. and Werme, L. (1996) Uraninite and UO2 in spent nuclear fuel: a comparison. J. Nucl. Mater., v.238, p.121-130. doi: 10.1016/s0022-3115(96)00345-5
  40. Jokelainen, L., Markovaara-Koivisto, M., Read, D., Lindberg, A., Siitari-Kauppi, M. and Hellmuth, K.H. (2010) Understanding uranium behavior at the Askola uranium mineralization. Radiochim Acta, v.98, p.743-747. doi: 10.1524/ract.2010.1776
  41. Ju, Y., Baik, M.H., Lee, S.Y., Lee, K.K., Kaown, D., Shin, D. and Ryu, J.H. (2023) Identifying the origin and fate of dissolved U in the Boeun aquifer based on microbial signatures and C, O, Fe, S, and U isotopes. J. Hazardous Mater., v.459, p.132501. doi: 10.1016/j.jhazmat.2023.132051
  42. Kanai, Y., Okuyama, Y., Seo, T. and Sakamaki, Y. (1998) Geochemical micro-behaviour of natural U-series in granitic conglomerate from the Tono mine, central Japan. Geochem. J., v.32(6), p.351-366. doi: 10.2343/geochemj.32.351
  43. KEPCO (2021) Statistics of Electric Power in Korea. Korea Electric Power Corporation, Gimcheon.
  44. Kim, C.S., Bae, D.S., Koh, Y.K. and Park, B.Y. (2010) A Preliminary Feasibility Study on Natural Analogue in Korea. KAERI technical report, KAERI/TR-1527/2000. Korea Atomic Energy Research Institute, Daejeon.
  45. Landstrom, O. and Tullborg, E. (1990) The influence of fracture mineral/groundwater interaction on the mobility of U, Th, REE and other trace elements. SKB technical report, SKB TR 90-37. Swedish Nuclear Fuel and Waste Management Company, Stockholm.
  46. Langmuir D. (1978) Uranium solution-mineral equilibria at lowtemperatures with applications to sedimentary ore-deposits. Geochim. Cosmochim. Acta, v.42, p.547-569. doi: 10.1016/0016-7037(78)90001-7
  47. Law, G.T.W., Geissler, A., Burke, I.T., Livens, F.R., Lloyd, J.R., McBeth, J.M. and Morris, K. (2011) Uranium redox cycling in sediment and biomineral systems. Geomicrobiol. J., v.28(5-6), p.497-506. doi: 10.1080/01490451.2010.512033
  48. Lee, D.Y., Yun, S., Lee, J.H. and Kim, J.T. (1986) Lithologic and structural controls and geochemistry of uranium deposition in the Ogcheon black-slate formation. Jour. Korean Inst. Mining Geol., v.19, p.19-41.
  49. MacKenzie, A., Scott, R., Linsalata, P. and Miekeley, N. (1992) Natural decay series studies of the redox front system in the Pocos de Caldas uranium mineralization. J. Geochem. Explor., v.45(1-3), p.289-322. doi: 10.1016/0375-6742(92)90128-u
  50. Miller, W., Alexander, W.R., Chapman, N., McKinley, I. and Smellie, J. (2000) Geological Disposal of Wastes and Natural Analogues - Lessons from Nature and Archaeology. Waste Management Series, Volume 2. Pergamon Press, Amsterdam.
  51. Milodowski, A.E., Alexander, W.R., West, J.M., Shaw, R.P., McEvoy, F.M., Scheidegger, J.M. and Field, L.P. (2015) A Catalogue of Analogues for Radioactive Waste Management. Commissioned report, CR/15/106, Nottingham British Geological Survey, Keyworth.
  52. NEA (2004) Post-Closure Safety Case for Geological Repositories - Nature and Purpose, NEA report, NEA-3679. Nuclear Energy Agency, Paris.
  53. Newsome, L., Morris, K. and Lloyd, J.R. (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol., v.363, p.164-184. doi: 10.1016/j.chemgeo.2013.10.034
  54. Nohara, T., Ochiai, Y., Seo, T. and Yoshida, H. (1992) Uranium-series disequilibrium studies in the Tono uranium deposit, Japan. Radiochim. Acta, v.58/59, p.409-414. doi: 10.1524/ract.1992.5859.2.409
  55. Noseck. U., Brasser, Th., Rajlich, P., Laciok, A. and Hercik, M. (2004) Mobility of uranium in tertiary argillaceous sediments - a natural analogue study. Radiochim. Acta, v.92, p.797-803. doi: 10.1524/ract.92.9.797.54972
  56. NSSC (2013) Regulations on the Criteria of Classification and Clearance of Radioactive Wastes. NSSC notification, No. 2017-65. Nuclear Safety and Security Commission, Seoul.
  57. Ozaki, T., Kimura, T., Ohnuki, T. and Francis, A.J. (2005) Associations of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans. J. Nucl. Radiochem. Sci., v.6, p.73-76. doi: 10.14494/jnrs2000.6.73
  58. Payne, T.T. and Airey, P.L. (2006) Radionuclide migration at the Koongarra uranium deposit, Northern Australia - Lessons from the Alligator Rivers analogue project. Phys. Chem. Earth, v.31, p.572-586. doi: 10.1016/j.pce.2006.04.008
  59. Pedersen, K. (2000) Microbial processes in radioactive waste disposal. SKB technical report, TR-00-04. Swedish Nuclear Fuel and Waste Management Co., Stockholm.
  60. Perez del Villar, L., Pelayo, M., Cozar, J.S., De la Cruz, B., Pardillo, J., Reyes, E., Caballero, E., Delgado, A., Nunez, R., Ivanovich, M. and Hasler, S.E. (1997) Mineralogical and geochemical evidence of the migration/retention processes of U and Th in fracture fillings from the El Berrocal granitic site (Spain). J. Contam. Hydrol., v.26, p.45-60. doi: 10.1016/s0169-7722(96)00057-5
  61. Pomies, C., Hamelin, B., Lancelot, J. and Blomqvist, R. (2004) 207Pb/206Pb and 238U/230Th dating of uranium migration in carbonate fractures from the Palmottu uranium ore (southern Finland). Appl. Geochem., v.19, p.273-288. doi: 10.1016/s0883-2927(03)00134-3
  62. Quejido, A.J., Perez del Villar, L., Cozar, J.S., Fernandez-Diaz, M. and Crespo, M.T. (2005) Distribution of trace elements in fracture fillings from the "Mina Fe" uranium deposit (Spain) by sequential leaching: implications for the retention processes. Appl. Geochem., v.20, p.487-506. doi: 10.1016/j.apgeochem.2004.09.010
  63. Robbert, Y., Rosendahl, C.D., Brown, A., Schippers, A., BernierLatmani, R. and Weyer, S. (2021) Uranium isotope fractionation during the anoxic mobilization of noncrystalline U(IV) by ligand complexation. Environ. Sci. Technol., v.55, p.7959-7969. doi: 10.1021/acs.est.0c08623
  64. Schmeide, K., Gurtler, S., Muller, K., Steudtner, R., Joseph, C., Bok, F. and Brendler, V. (2014) Interaction of U(VI) with Aspo diorite: a batch and in situ ATR FT-IR sorption study. Appl. Geochem., v.49, p.116-125. doi: 10.1016/j.apgeochem.2014.05.003
  65. Scott, R., MacKenzie, A. and Alexander, W. (1992). The interpretation of 238U-234U-230Th-226Ra disequilibria produced by rock-water interactions. J. Geochem. Explor., v.45(1-3), p.323-343. doi: 10.1016/0375-6742(92)90129-v
  66. Shin, D. and Kim, S. (2011) Geochemical characteristics of black slate and coaly slate from the uranium deposit in Deokpyeong Area. Econ. Environ. Geol., v.44(5), p.372-386. doi: 10.9719/eeg.2011.44.5.373
  67. Shin, D. and Kim, S. (2016) PGE distribution in the metalliferous black slates in the Okcheon Metamorphic Belt, South Korea. Geosciences J., v.20(6), p.827-835. doi: 10.1007/s12303-016-0029-6
  68. Shin, I., Kim, S. and Shin, D. (2016) Mineralogy and sulfur isotope compositions of the uraniferous black slates in the Ogcheon Metamorphic Belt, South Korea. J. Geochem. Explor., v.169, p.1-12. doi: 10.1016/j.gexplo.2016.07.008
  69. SKB (1988) Including summaries of technical reports issued during 1988, SKB Annual report, 88-32, Swedish Nuclear Fuel and Waste Management Co., Stockholm.
  70. Smellie, J.A.T., Karlsson, F. and Alexander, W.R. (1997) Natural analogue studies: present status and performance assessment implications. J. Contam. Hydrol., v.26, p.3-17. doi: 10.1016/s0169-7722(96)00053-8
  71. Smellie, J.A.T., MacKenzie, A.B. and Scott, R.D. (1986) An analogue validation study of natural radionuclide migration in crystalline rocks using uranium-series disequilibrium studies. Chem. Geol., v.55, p.233-254. doi: 10.1016/0009-2541(86)90027-6
  72. So, C.S. and Kang, J.K. (1978) Mineralogy and geochemistry of uranium-bearing black slates in the Ogcheon Group, Korea. J. Geol. Soc. Korea, v.14(3), p.93-102.
  73. Steiger, R.H. and Jager, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci. Lett., v.36, p.359-362. doi: 10.1016/0012-821x(77)90060-7
  74. Stirling, C.H., Andersen, M.B., Warthmann, R. and Halliday, A.N. (2015) Isotope fractionation of U-238 and U-235 during biologically-mediated uranium reduction. Geochim. Cosmochim. Acta, v.163, p.200-218. doi: 10.1016/j.gca.2015.03.017
  75. Stroes-Gascoyne, S. and West, J.M. (1997) Microbial studies in the Canadian nuclear waste management program. FEMS Microbiol. Rev., v.20, p.573-590. doi: 10.1111/j.1574-6976.1997.tb00339.x
  76. Stylo, M., Neubert, N., Wang, Y., Monga, N., Romaniello, S.J., Weyer, S. and Bernier-Latmani, R. (2015) Uranium isotopes fingerprint biotic reduction. Proceedings of the National Academy of Sciences, v.112(18), p.5619-5624. doi: 10.1073/pnas.1421841112
  77. Suksi, J., Ruskeeniemi, T., Linberg, A. and Jaakkola, T. (1991) The distribution of natural radionuclides on fracture surfaces in Palmottu analogue study site in SW Finland. Radiochim. Acta, v.52/53, p.367-372. doi: 10.1524/ract.1991.5253.2.367
  78. Suutarinen, R., Blomqvist, R., Halonen, S. and Jaakkola, T. (1991) Uranium in groundwater in Palmottu analogue study site in Finland. Radiochim. Acta, v.52/53, p.373-380. doi: 10.1524/ract.1991.5253.2.373
  79. Thiel, K.R., Vorwerk, R., Saager, R. and Stupp, H.D. (1983). Uranium fission tracks and 238U-series disequilibria as a means to study recent mobilization of uranium in Archean pyritic conglomerates. Earth Planet. Sci. Lett., v.65, p.249-262. doi: 10.1016/0012-821x(83)90164-4
  80. Tripathi, R.M., Sahoo, S.K., Mohapatra, S., Lenka, P., Dubey, J.S. and Puranik, V.D. (2013) Study of uranium isotopic composition in groundwater and deviation from secular equilibrium condition. J. Radioanal. Nucl. Chem., v.295, p.1195-1200. doi: 10.1007/s10967-012-1992-7
  81. Ulrich, K.-U., Veeramani, H., Bernier-Latmani, R. and Giammar, D.E. (2011) Speciation-dependent kinetics of uranium(VI) bioreduction. Geomicrobiol. J., v.28(5-6), p.396-409. doi: 10.1080/01490451.2010.507640
  82. USGS (2010) Analogues to features and processes of a high-level nuclear waste repository proposed for Yucca Mountain, Nevada. Professional Paper 1779. United State Geological Survey, Denver.
  83. Weber, N., Schorscher, H.D. and Peters, T. (1991) Mineralogy, petrology and geochemistry of the Pocos de Caldas analogue study sites, Minas Gerais, Brazil. I: Osamu Utsumi uranium mine. SKB technical report 90-11. Swedish Nuclear Fuel and Waste Management Co., Stockholm.
  84. West, J.M., McKinley, I.G. and Chapman, N.A. (1982) Microbes in deep geological systems and their possible influence on radioactive waste disposal. Radioac. Waste Management Nucl. Fuel Cycle, v.3, p.1-15.