DOI QR코드

DOI QR Code

An Analysis of Changes in Air Pollutant Emissions Due to the Introduction of the Special Act on the Improvement of Air Quality in Port Areas -Focusing on Incheon Port

항만지역등 대기질 개선에 관한 특별법 도입에 따른 대기오염물질 배출량 변화 분석 -인천항을 중심으로

  • Received : 2023.09.06
  • Accepted : 2023.09.30
  • Published : 2023.09.30

Abstract

This study aims to analyze the effect of reducing air pollutant emissions of the ship fuel oil sulfur content regulation policy, which has been gradually introduced for three years. In addition, the emission reduction effect of VSR and AMP was also analyzed. The analysis was conducted on NOx, CO, VOC, SOx, TSP, PM10, and PM2.5, which are provided by EEA, and the spatial scope of the analysis was conducted on Incheon Port, which is located in the metropolitan area of Korea and has a large ripple effect on air pollution. Three scenarios were constructed for analysis. Scenario 1: If there is no policy, Scenario 2: If only fuel oil sulfur content regulation was implemented, Scenario 3: The analysis was conducted by reflecting fuel oil sulfur content regulation, VSR, and AMP. As a result of the analysis, in the case of scenario 1, 4,801 tons, 4,932 tons, and 5,144 tons of air pollutants were emitted during the three-year period. In Scenario 2, 4,219 tons, 4,152 tons, and 3,989 tons were discharged, and in Scenario 3, 4,198 tons, 4,138 tons, and 3,973 tons were discharged. The findings of this study are anticipated to be applied as fundamental research in port air environment management and Incheon Metropolitan City air management.

본 연구는 3년간 단계적으로 도입되고 있는 선박 연료유 황 함유량 규제정책의 대기오염물질 배출저감 효과를 분석하고자 한다. 부가적으로 VSR과 AMP의 배출저감 효과도 분석하였다. 분석은 EEA에서 제공하고 있는 NOx, CO, VOC, SOx, TSP, PM10, PM2.5를 대상으로 하였으며, 분석의 공간적 범위는 우리나라 수도권에 위치하여 대기오염에 대한 파급효과가 큰 인천항을 대상으로 하였다. 분석은 다음과 같이 시나리오 1: 정책이 없는 경우 시나리오 2: 연료유 황 함량 규제만 시행하는 경우 시나리오 3: 연료유 황 함량 규제, VSR, AMP를 반영하여 분석하였다. 분석 결과 시나리오 1의 경우 3년의 기간 동안 4,801톤, 4,932톤, 5,144톤의 대기오염물질이 배출된 것으로 나타났다. 시나리오 2는 4,219톤, 4,152톤, 3,989톤이 배출되었고, 시나리오 3은 4,198톤, 4,138톤, 3,973톤이 배출된 것으로 나타났다. 본 연구결과는 항만 대기환경관리와 인천광역시 대기관리의 기초연구로 적용될 수 있을 것으로 기대된다.

Keywords

References

  1. 국립환경과학원(2013), 국가 대기오염물질 배출량 산정방법 편람III.
  2. 국립환경과학원(2016), 국내 연근해 선박에 의한 대기오염 물질 및 온실가스 배출계수 개발과 배출량 산정 III, 2016.
  3. 김대진.배윤경.김상록(2022), 국내 도로부문 오염물질의 공간적 확산을 고려한 대기오염농도 분석방법론 연구, 대한교통학회지, 40(3), 380-399. https://doi.org/10.7470/jkst.2022.40.3.380
  4. 김소영.권혜옥(2018), 대기확산시뮬레이션 중첩분석을 통한 부산.울산 악취피해영향범위 연구, 한국방재학회 논문집, 18, 83-91.
  5. 김환성.조민지(2008), 항만의 CO2 배출량 산정에 관한 연구, 국항해항만학회 학술대회논문집, 137-139.
  6. 이민우.이향숙(2016), 선박 배기가스 배출량 및 환경비용 산출에 관한 연구: 부산항을 중심으로, 한국항만경제학회지, 32(4), 15-28.
  7. 이민우.이향숙(2018), 선박 배기가스의 대기확산 패턴에 관한 연구: 부산항을 중심으로, 한국항만경제학회지, 34(1), 35-49. https://doi.org/10.38121/kpea.2018.03.34.1.35
  8. 이정욱.이향숙(2021), 인천항의 대기오염물질 배출량 산정 연구. 한국항만경제학회지, 37(1), 143-157.
  9. 조정정.범태황.이향숙(2020), An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon. 한국항만경제학회지, 36(3), 21-38.
  10. 조정정.윤경준.이향숙(2019), 선박에 기인한 대기오염물질 배출량 산정 연구-광양항과 울산항을 중심으로. 한국항만경제학회지, 35(2), 93-107.
  11. 한세현.윤종상.김우중.서윤호.정용원(2011), 인천항항만시설에서의 대기오염물질 배출량 산정, 한국대기환경학회지, 27(4), 460-471. https://doi.org/10.5572/KOSAE.2011.27.4.460
  12. 해양수산부(2019), 항만지역등 대기질 개선에 관한 특별법
  13. Bai, S., Wen, Y., He, L., Liu, Y., Zhang, Y., Yu, Q., and Ma, W(2020), Single-vessel plume dispersion simulation: Method and a case study using CALPUFF in the Yantian port area, Shenzhen (China). International Journal of Environmental Research and Public Health, 17(21), 7831.
  14. Berechman, J., and Tseng, P. H(2012), Estimating the environmental costs of port related emissions: The case of Kaohsiung. Transportation Research Part D: Transport and Environment, 17(1), 35-38. https://doi.org/10.1016/j.trd.2011.09.009
  15. Chang, C. C., and Wang, C. M(2012), Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan. Transportation Research Part D: Transport and Environment, 17(3), 185-189. https://doi.org/10.1016/j.trd.2011.11.006
  16. Deniz, C., Kilic, A., and Civkaroglu, G(2010), Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental monitoring and assessment, 171, 219-228. https://doi.org/10.1007/s10661-009-1273-2
  17. EEA(2016), EMEP/EEA air pollutant emission inventory guidebook 2016.
  18. Ernestos Tzannatos(2010), Ship emissions and their externalities for the port of Piraeus e Greece, Atmospheric Environment 44, 400-407. https://doi.org/10.1016/j.atmosenv.2009.10.024
  19. Fiadomor, R(2009), Assessment of alternative maritime power (cold ironing) and its impact on port management and operations.
  20. Kalli, J., Jalkanen, J. P., Johansson, L., and Repka, S(2013), Atmospheric emissions of European SECA shipping: long-term projections. WMU Journal of Maritime Affairs, 12(2), 129-145. https://doi.org/10.1007/s13437-013-0050-9
  21. Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J. P., Johansson, L., and Fridell, E(2019), Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region. Atmospheric Chemistry and Physics, 19(3), 1721-1752. https://doi.org/10.5194/acp-19-1721-2019
  22. Kim, K., Roh, G., and Chun, K(2019), Analysis of the Emission Benefits of Using Alternative Maritime Power (AMP) for Ships. Journal of the Korean Society of Marine Environment & Safety, 25(3), 381-394.3 https://doi.org/10.7837/kosomes.2019.25.3.381
  23. Matthias, V., Bewersdorff, I., Aulinger, A., and Quante, M(2010), The contribution of ship emissions to air pollution in the North Sea regions. Environmental Pollution, 158(6), 2241-2250. https://doi.org/10.1016/j.envpol.2010.02.013
  24. Shi, K., Weng, J. and Li, G(2020), Exploring the effectiveness of ECA policies in reducing pollutant emissions from merchant ships in Shanghai port waters, Marine pollution bulletin, 155, 111164.
  25. U.S. EPA(2009), Current methodologies in Preparing Mobile Source Port-Related Emission Inventories. ICF International Final report to Environmental Protection Agency.
  26. Viana, M., Fann, N., Tobias, A., Querol, X., Rojas-Rueda, D., Plaza, A. and Fernandez, C(2015), Environmental and health benefits from designating the marmara sea and the Turkish straits as an emission control area (ECA). Environmental science & technology, 49(6), 3304-3313. https://doi.org/10.1021/es5049946
  27. Wu, Z., Zhang, Y., He, J., Chen, H., Huang, X., Wang, Y., Yu, X., Yang, W., Zhang, R., Zhu, M., Li, S., Fang, H., Zhang, Z., and Wang, X(2020), Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area, Atmospheric Chemistry and Physics, 20(4), 1887-1900. https://doi.org/10.5194/acp-20-1887-2020
  28. Yim, S. H., Fung, J. C., and Lau, A. K(2010), Use of high-resolution MM5/CALMET/CALPUFF system: SO2 apportionment to air quality in Hong Kong, Atmospheric Environment, 44(38), 4850-4858. https://doi.org/10.1016/j.atmosenv.2010.08.037
  29. Zhang, Q., Zheng, Z., Wan, Z., and Zheng, S(2020), Does emission control area policy reduce sulfur dioxides concentration in Shanghai?, Transportation Research Part D: Transport and Environment, 81, 102289.
  30. Zhang, Y., Fung, J. C., Chan, J. W., and Lau, A. K(2019), The significance of incorporating unidentified vessels into AIS-based ship emission inventory. Atmospheric Environment, 203, 102-113. https://doi.org/10.1016/j.atmosenv.2018.12.055
  31. Zhao, Tingting., Pham, Thaihoang., and Lee, Hyangsook(2020), 인천항 하역장비 대기오염물질 배출량 산정 연구, 한국항만경제학회지, 제36집 제3호, 21-38. https://doi.org/10.38121/kpea.2020.09.36.3.21