Acknowledgement
This research was supported by the 2022 Research Fund of KEPCO International Nuclear Graduate School (KINGS).
References
- D'Auria, Best estimate plus uncertainty (BEPU): status and perspectives, Nuclear Engineering and Design 352 (October) (2019), 110190.
- IAEA, Deterministic safety analysis for nuclear power plants, in: Specific Safety Guides, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2019. SSG-2 (Rev.1), https://www.iaea.org/publications/12335/deterministic-safety-analysis-for-nuclear-power-plants.
- IAEA, Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation, International Atomic Energy Agency, Vienna, 2008. Safety Reports Series 52, https://www.iaea.org/publications/7768/best-estimate-safety-analysis-for-nuclear-power-plants-uncertainty-evaluation.
- F. D'Auria, Best-estimate plus uncertainty (BEPU) approach for accident analysis, in: Thermal-hydraulics of Water Cooled Nuclear Reactors, Elsevier, 2017, 905-50.
- Upendra S. Rohatgi, Joshua S. Kaizer, Historical perspectives of BEPU research in US, Nuclear Engineering and Design 358 (2020), 110430. March.
- Cesar Queral, J. Montero-Mayorga, Juan Gonzalez-Cadelo, Gonzalo Jimenez, AP1000® large-break LOCA BEPU analysis with TRACE code, Annals of Nuclear Energy 85 (November) (2015) 576-589. https://doi.org/10.1016/j.anucene.2015.06.011
- W. Sallehhudin, A. Diab, Using machine learning to predict the fuel peak cladding temperature for a large Break loss of coolant accident, Frontiers in Energy Research 9 (2021), 755638. October.
- Piotr Mazgaj, Piotr Darnowski, Aleksej Kaszko, Javier Hortal, Milorad Dusic, Rafael Mendizabal, Fernando Pelayo, Demonstration of the E-BEPU method-ology for SL-LOCA in a gen-III PWR reactor, Reliability Engineering & System Safety 226 (October) (2022), 108707.
- Wei Chen, Qingwen Xiong, Dan Wu, Shuhua Ding, Libo Qian, Qing Wu, Uncertainty analysis of HPR-1000 LOCA with probabilistic and deterministic methods, Progress in Nuclear Energy 146 (2022), 104174. April.
- A. Petruzzi, M. Cherubini, M. Lanfredini, F. D'Auria, O. Mazzantini, The BEPU evaluation model with RELAP5-3D for the licensing of the atucha-II NPP, Nuclear Technology 193 (1) (2016) 113-160. https://doi.org/10.13182/NT14-145
- Alberto Ghione, Brigitte Noel, Paolo Vinai, Christophe Demaziere, Uncertainty and sensitivity analysis for the simulation of a station blackout scenario in the Jules Horowitz reactor, Annals of Nuclear Energy 104 (June) (2017) 28-41. https://doi.org/10.1016/j.anucene.2017.02.008
- Robert Musoiu, Roxana-Mihaela Nistor-Vlad, Ilie Prisecaru, Chris Allison, BEPU approach in the CANDU 6 severe accident analysis, in: 2019 International Conference on ENERGY and ENVIRONMENT (CIEM), 73-77, IEEE, 2019. Timisoara, Romania.
- Salama Obaid Alketbi, Aya Diab, A systems engineering approach to predict the success window of FLEX strategy under extended SBO using artificial intelligence, Journal of the Korean Society of Systems Engineering 16 (2) (2020) 97-109. https://doi.org/10.14248/JKOSSE.2020.16.2.097
- Olivier Marchand, Jinzhao Zhang, Marco Cherubini, Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic Co-operation and development (OECD)/Nuclear energy agency (NEA) benchmark on reactivity-initiated accident codes phaseII, Nuclear Engineering and Technology 50 (2) (2018) 280-291. https://doi.org/10.1016/j.net.2017.12.007
- A. Dokhane, A. Vasiliev, M. Hursin, D. Rochman, H. Ferroukhi, A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments, Nuclear Engineering and Technology 54 (5) (2022) 1804-1812. https://doi.org/10.1016/j.net.2021.10.042
- Jacob P. Gorton, Nicholas R. Brown, Defining the performance envelope of reactivity-initiated accidents in a high-temperature gas-cooled reactor, Nuclear Engineering and Design 370 (December) (2020), 110865.
- Chan-Su Jang, Um Kil-Sup, Applications of integrated safety analysis methodology to reload safety evaluation, Nuclear Engineering and Technology 43 (2) (2011) 187-194. https://doi.org/10.5516/NET.2011.43.2.187
- U. S. Nuclear Regulatory Commission (US NRC), Regulations Title 10, Code of Federal Rregulations, Part 50, Appendix A: "General Design Criteria for Nuclear Power Plants", U. S. Nuclear Regulatory Commission (2007a). https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-appa.html.
- Korea Hydro and Nuclear Power (KHNP), APR1400 Design Control Document Tier 2: Chapter 1 Introduction and General Description of the Plant, U. S. Nuclear Regulatory Commission (2018b). Revision 3, https://www.nrc.gov/docs/ML1822/ML18228A648.pdf. Revision 3.
- Innovative Systems Software LLC, RELAP/SDAPSIM/MOD3.x User Reference Manual - Volume I - Advanced Fluid Systems Thermal Hydraulics Analysis, Innovative Systems Software LLC, 2020.
- N.W. Porter, Wilks' formula applied to computational tools: a practical discussion and verification, Annals of Nuclear Energy 133 (2019) 129-137. https://doi.org/10.1016/j.anucene.2019.05.012
- Seola Han, Taewan Kim, Numerical experiments on order statistics method based on Wilks' formula for best-estimate plus uncertainty methodology, Journal of Environmental Management 235 (2019) 28-33. April.
- L.S. Tong, Heat transfer in water-cooled nuclear reactors, Nuclear Engineering and Design 6 (4) (1967) 301-324. https://doi.org/10.1016/0029-5493(67)90111-2
- M. Hwang, S. Bae, B.D. Chung, APR1400 LBLOCA Uncertainty Quantification by Monte Carlo Method and Comparison with Wilks' Formula, American Nuclear Society - ANS, United States, 2012. http://inis.iaea.org/search/search.aspx?orig_q=RN:44065607.
- U.S. Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.157 (Task RS 701-4), Best-Estimate Calculations of Emergency Core Cooling System Performance, vol. 20, 1989.
- Brian M. Adams, William J. Bohnhoff, Dalbey Keith, John P. Eddy Mohamed Salah Ebeida, Michael S. Eldred, Russell Hooper, et al., 'Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 User's Manual'. United States, 2020.
- M. Casamor, M. Avramova, F. Reventos, J. Freixa, Off-line vs. Semi-implicit TH-TH coupling schemes: a BEPU comparison, Annals of Nuclear Energy 178 (2022), 109344.
- Yang Chang-Keun, Lee Dong-Hyuk, Sang-Jun Ha, OPR1000 CEA withdrawal at power accident analysis using the SPACE code, in: 2016 Korean Nuclear Society Autumn Meeting. Gyeongju, Republic of Korea, 2016.
- Lee Dong-Hyuk, Yang Chang-Keun, Yo-Han Kim, Sung Chang-Kyung, APR1400 CEA withdrawal at power accident analysis using KNAP, in: 2006 Korean Nuclear Society Spring Meeting. Chuncheon, Republic of Korea, 2006.
- Korea Hydro and Nuclear Power (KHNP), 'APR1400 Design Control Document Tier 2: Chapter 15 Transient and Accident Analyses, U. S. Nuclear Regulatory Commission, 2018. Revision 3, https://www.nrc.gov/docs/ML1822/ML18228A662.pdf.
- Min-Ho Park, Park Jin-Woo, Guen-Tae Park, Um Kil-Sup, Ryu Seok-Hee, JaeIl Lee, Choi Tong-Soo, 3-D rod ejection analysis using a conservative methodology, in: 2016 Korean Nuclear Society Autumn Meeting. Gyeongju, Republic of Korea, 2016.
- U.S. Nuclear Regulatory Commission (US NRC), Standard Review Plan: 15.4.2 Uncontrolled Control Rod Assembly Withdrawal at Power, 2007. U. S. Nuclear Regulatory Commission, https://www.nrc.gov/docs/ML0636/ML063600414.pdf. U. S. Nuclear Regulatory Commission.