DOI QR코드

DOI QR Code

Analysis of Control Element Assembly Withdrawal at Full Power Accident Scenario Using a Hybrid Conservative and BEPU Approach

  • Kajetan Andrzej Rey (Department of NPP Engineering, KEPCO International Nuclear Graduate School) ;
  • Jan Hruskovic (Department of NPP Engineering, KEPCO International Nuclear Graduate School) ;
  • Aya Diab (Department of NPP Engineering, KEPCO International Nuclear Graduate School)
  • Received : 2022.09.27
  • Accepted : 2023.06.25
  • Published : 2023.10.25

Abstract

Reactivity Initiated Accident (RIA) scenarios require special attention using advanced simulation techniques due to their complexity and importance for nuclear power plant (NPP) safety. While the conservative approach has traditionally been used for safety analysis, it may lead to unrealistic results which calls for the use of best estimate plus uncertainty (BEPU) approach, especially with the current advances in computational power which makes the BEPU analysis feasible. In this work an Uncontrolled Control Element Assembly (CEA) Withdrawal at Full Power accident scenario is analyzed using the BEPU approach by loosely coupling the thermal hydraulics best-estimate system code (RELAP5/SCDAPSIM/MOD3.4) to the statistical analysis software (DAKOTA) using a Python interface. Results from the BEPU analysis indicate that a realistic treatment of the accident scenario yields a larger safety margin and is therefore encouraged for accident analysis as it may enable more economic and flexible operation.

Keywords

Acknowledgement

This research was supported by the 2022 Research Fund of KEPCO International Nuclear Graduate School (KINGS).

References

  1. D'Auria, Best estimate plus uncertainty (BEPU): status and perspectives, Nuclear Engineering and Design 352 (October) (2019), 110190.
  2. IAEA, Deterministic safety analysis for nuclear power plants, in: Specific Safety Guides, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2019. SSG-2 (Rev.1), https://www.iaea.org/publications/12335/deterministic-safety-analysis-for-nuclear-power-plants.
  3. IAEA, Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation, International Atomic Energy Agency, Vienna, 2008. Safety Reports Series 52, https://www.iaea.org/publications/7768/best-estimate-safety-analysis-for-nuclear-power-plants-uncertainty-evaluation.
  4. F. D'Auria, Best-estimate plus uncertainty (BEPU) approach for accident analysis, in: Thermal-hydraulics of Water Cooled Nuclear Reactors, Elsevier, 2017, 905-50.
  5. Upendra S. Rohatgi, Joshua S. Kaizer, Historical perspectives of BEPU research in US, Nuclear Engineering and Design 358 (2020), 110430. March.
  6. Cesar Queral, J. Montero-Mayorga, Juan Gonzalez-Cadelo, Gonzalo Jimenez, AP1000® large-break LOCA BEPU analysis with TRACE code, Annals of Nuclear Energy 85 (November) (2015) 576-589. https://doi.org/10.1016/j.anucene.2015.06.011
  7. W. Sallehhudin, A. Diab, Using machine learning to predict the fuel peak cladding temperature for a large Break loss of coolant accident, Frontiers in Energy Research 9 (2021), 755638. October.
  8. Piotr Mazgaj, Piotr Darnowski, Aleksej Kaszko, Javier Hortal, Milorad Dusic, Rafael Mendizabal, Fernando Pelayo, Demonstration of the E-BEPU method-ology for SL-LOCA in a gen-III PWR reactor, Reliability Engineering & System Safety 226 (October) (2022), 108707.
  9. Wei Chen, Qingwen Xiong, Dan Wu, Shuhua Ding, Libo Qian, Qing Wu, Uncertainty analysis of HPR-1000 LOCA with probabilistic and deterministic methods, Progress in Nuclear Energy 146 (2022), 104174. April.
  10. A. Petruzzi, M. Cherubini, M. Lanfredini, F. D'Auria, O. Mazzantini, The BEPU evaluation model with RELAP5-3D for the licensing of the atucha-II NPP, Nuclear Technology 193 (1) (2016) 113-160. https://doi.org/10.13182/NT14-145
  11. Alberto Ghione, Brigitte Noel, Paolo Vinai, Christophe Demaziere, Uncertainty and sensitivity analysis for the simulation of a station blackout scenario in the Jules Horowitz reactor, Annals of Nuclear Energy 104 (June) (2017) 28-41. https://doi.org/10.1016/j.anucene.2017.02.008
  12. Robert Musoiu, Roxana-Mihaela Nistor-Vlad, Ilie Prisecaru, Chris Allison, BEPU approach in the CANDU 6 severe accident analysis, in: 2019 International Conference on ENERGY and ENVIRONMENT (CIEM), 73-77, IEEE, 2019. Timisoara, Romania.
  13. Salama Obaid Alketbi, Aya Diab, A systems engineering approach to predict the success window of FLEX strategy under extended SBO using artificial intelligence, Journal of the Korean Society of Systems Engineering 16 (2) (2020) 97-109. https://doi.org/10.14248/JKOSSE.2020.16.2.097
  14. Olivier Marchand, Jinzhao Zhang, Marco Cherubini, Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic Co-operation and development (OECD)/Nuclear energy agency (NEA) benchmark on reactivity-initiated accident codes phaseII, Nuclear Engineering and Technology 50 (2) (2018) 280-291. https://doi.org/10.1016/j.net.2017.12.007
  15. A. Dokhane, A. Vasiliev, M. Hursin, D. Rochman, H. Ferroukhi, A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments, Nuclear Engineering and Technology 54 (5) (2022) 1804-1812. https://doi.org/10.1016/j.net.2021.10.042
  16. Jacob P. Gorton, Nicholas R. Brown, Defining the performance envelope of reactivity-initiated accidents in a high-temperature gas-cooled reactor, Nuclear Engineering and Design 370 (December) (2020), 110865.
  17. Chan-Su Jang, Um Kil-Sup, Applications of integrated safety analysis methodology to reload safety evaluation, Nuclear Engineering and Technology 43 (2) (2011) 187-194. https://doi.org/10.5516/NET.2011.43.2.187
  18. U. S. Nuclear Regulatory Commission (US NRC), Regulations Title 10, Code of Federal Rregulations, Part 50, Appendix A: "General Design Criteria for Nuclear Power Plants", U. S. Nuclear Regulatory Commission (2007a). https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-appa.html.
  19. Korea Hydro and Nuclear Power (KHNP), APR1400 Design Control Document Tier 2: Chapter 1 Introduction and General Description of the Plant, U. S. Nuclear Regulatory Commission (2018b). Revision 3, https://www.nrc.gov/docs/ML1822/ML18228A648.pdf. Revision 3.
  20. Innovative Systems Software LLC, RELAP/SDAPSIM/MOD3.x User Reference Manual - Volume I - Advanced Fluid Systems Thermal Hydraulics Analysis, Innovative Systems Software LLC, 2020.
  21. N.W. Porter, Wilks' formula applied to computational tools: a practical discussion and verification, Annals of Nuclear Energy 133 (2019) 129-137. https://doi.org/10.1016/j.anucene.2019.05.012
  22. Seola Han, Taewan Kim, Numerical experiments on order statistics method based on Wilks' formula for best-estimate plus uncertainty methodology, Journal of Environmental Management 235 (2019) 28-33. April.
  23. L.S. Tong, Heat transfer in water-cooled nuclear reactors, Nuclear Engineering and Design 6 (4) (1967) 301-324. https://doi.org/10.1016/0029-5493(67)90111-2
  24. M. Hwang, S. Bae, B.D. Chung, APR1400 LBLOCA Uncertainty Quantification by Monte Carlo Method and Comparison with Wilks' Formula, American Nuclear Society - ANS, United States, 2012. http://inis.iaea.org/search/search.aspx?orig_q=RN:44065607.
  25. U.S. Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.157 (Task RS 701-4), Best-Estimate Calculations of Emergency Core Cooling System Performance, vol. 20, 1989.
  26. Brian M. Adams, William J. Bohnhoff, Dalbey Keith, John P. Eddy Mohamed Salah Ebeida, Michael S. Eldred, Russell Hooper, et al., 'Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 User's Manual'. United States, 2020.
  27. M. Casamor, M. Avramova, F. Reventos, J. Freixa, Off-line vs. Semi-implicit TH-TH coupling schemes: a BEPU comparison, Annals of Nuclear Energy 178 (2022), 109344.
  28. Yang Chang-Keun, Lee Dong-Hyuk, Sang-Jun Ha, OPR1000 CEA withdrawal at power accident analysis using the SPACE code, in: 2016 Korean Nuclear Society Autumn Meeting. Gyeongju, Republic of Korea, 2016.
  29. Lee Dong-Hyuk, Yang Chang-Keun, Yo-Han Kim, Sung Chang-Kyung, APR1400 CEA withdrawal at power accident analysis using KNAP, in: 2006 Korean Nuclear Society Spring Meeting. Chuncheon, Republic of Korea, 2006.
  30. Korea Hydro and Nuclear Power (KHNP), 'APR1400 Design Control Document Tier 2: Chapter 15 Transient and Accident Analyses, U. S. Nuclear Regulatory Commission, 2018. Revision 3, https://www.nrc.gov/docs/ML1822/ML18228A662.pdf.
  31. Min-Ho Park, Park Jin-Woo, Guen-Tae Park, Um Kil-Sup, Ryu Seok-Hee, JaeIl Lee, Choi Tong-Soo, 3-D rod ejection analysis using a conservative methodology, in: 2016 Korean Nuclear Society Autumn Meeting. Gyeongju, Republic of Korea, 2016.
  32. U.S. Nuclear Regulatory Commission (US NRC), Standard Review Plan: 15.4.2 Uncontrolled Control Rod Assembly Withdrawal at Power, 2007. U. S. Nuclear Regulatory Commission, https://www.nrc.gov/docs/ML0636/ML063600414.pdf. U. S. Nuclear Regulatory Commission.