Acknowledgement
The reporting research activity was carried out at Paul Scherrer Institute (PSI - Switzerland) within the STARS/ENSI RND Programme 2020-22, which was supported by the Swiss Federal Nuclear Safety Inspectorate (ENSI). The author is grateful to Dr. Gorzel, Andreas (ENSI) for the review of the paper manuscript.
References
- EPRI License Agreement, Agreement No. 03-0601 VP, 2004, 30.09.
- Fuel Analysis and Licensing Code: FALCON MOD01, vol. 1, Theoretical and Numerical Bases, EPRI, Palo Alto, CA, 2004, 1011307.
- Fuel Analysis and Licensing Code: FALCON MOD01, vol. 2, User's Manual, EPRI, Palo Alto, CA, 2004, 1011308.
- Fuel Analysis and Licensing Code: FALCON MOD01, vol. 3, Verification and Validation, EPRI, Palo Alto, CA, 2004, 1011309.
- G. Khvostov, A dynamic model for fission gas release and gaseous swelling integrated into the FALCON fuel analysis and licensing code, Proc. TOP Fuel 2009, Paris, France (2009) 2085. September 6-10.
- G. Khvostov, W. Wiesenack, M.A. Zimmermann, G. Ledergerber, Some insights into the role of axial gas flow in fuel rod behaviour during the LOCA based on Halden tests and calculations with the FALCON-PSI code, Nucl. Eng. Des. 241 (5) (2011) 1500-1507, https://doi.org/10.1016/j.nucengdes.2011.03.003.
- F. Ribeiro, G. Khvostov, Multi-scale approach to advanced fuel modelling for enhanced safety, Prog. Nucl. Energy 84 (2015) 24-35, https://doi.org/10.1016/j.pnucene.2015.03.022.
- L.E. Herranz, I. Vallejo, G. Khvostov, J. Sercombe, G. Zhou, Assessment of fuel rod performance codes under ramp scenarios investigated within the SCIP project, Nucl. Eng. Des. 241 (3) (2011) 815-825, https://doi.org/10.1016/j.nucengdes.2011.01.007, 11.
- G. Khvostov, W. Lyon, M.A. Zimmermann, Application of the FALCON code to PCI induced cladding failure and the effects of missing pellet surface, Ann. Nucl. Energy 62 (2013) 398-412, https://doi.org/10.1016/j.anucene.2013.07.002.
- G. Khvostov, Analysis of cladding failure in a BWR fuel rod using a SLICE-DO model of the FALCON code, Nucl. Eng. Technol. 52 (12) (2020) 2887-2900, https://doi.org/10.1016/j.net.2020.05.015.
- G. Khvostov, Numerical simulation of the effects of localized cladding oxidation on LWR fuel rod design limits using a SLICE-DO model of the FALCON code, Nucl. Eng. Technol. 52 (1) (2020) 135-147, https://doi.org/10.1016/j.net.2019.07.010.
- G. Khvostov, Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring, Nucl. Eng. Technol. 50 (7) (2018) 1190-1197, https://doi.org/10.1016/j.net.2018.07.003.
- G. Khvostov, A. Romano, M.A. Zimmermann, Modeling the effects of axial fuel relocation in the IFA-650.4 LOCA test, presented at the Enlarged Halden programme group meeting 2007, Storefjell, Norway (March 11-16, 2007) 14.
- G. Khvostov, A. Pautz, E. Kolstad, G. Ledergerber, Analysis of a Halden LOCA test with the BWR high burnup fuel, in: LWR Fuel Performance Meeting, TopFuel, 2013, pp. 644-651, 2013.
- G. Khvostov, Modelling effects of transient FGR in LWR fuel rods during a LOCA, J. Nucl. Mater. 559 (26) (2022), 153446, https://doi.org/10.1016/j.jnucmat.2021.153446.
- G. Khvostov, Models for numerical simulation of burst FGR in fuel rods under the conditions of RIA, Nucl. Eng. Des. 328 (2018) 36-57, https://doi.org/10.1016/j.nucengdes.2017.12.028.
- G. Khvostov, A. Gorzel, FALCON code-based analysis of PWR fuel rod behaviour during RIA transients versus new U.S.NRC and current Swiss failure limits, Nucl. Eng. Technol. 53 (11) (2021) 3741-3758, https://doi.org/10.1016/j.net.2021.06.001.
- H. Ferroukhi, Proposal STARS/ENSI RND Activities 2020-2022. SB-PL-REC-010-19, PSI, September 2019.
- OECD/NEA international fuel performance experiments (IFPE) database. Web. https://www.oecd-nea.org/jcms/pl_36360/ifpe-content.
- G. Khvostov, Calibration and Validation of thermal fuel behaviour models based on the first case of the first IAEA CRP FUMEX, J. Nucl. Mater. (2023), https://doi.org/10.1016/j.jnucmat.2023.154588.
- G. Khvostov, Analysis of thermal fuel behaviour under steady-state irradiation using selected cases of the IAEA CRP FUMEX, J. Nucl. Mater. (2023), https://doi.org/10.1016/j.jnucmat.2023.154589.
- G. Khvostov, Interpretation of the online measurement data on thermal fuel behavior during the two bump-tests of the RISOE-III project, Paper Manuscript Under Prepar. Submitt. Nucl. Eng. Design j. (2023).
- D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Web, United States: N. p., 1976, pp. 113-144, https://doi.org/10.2172/7343826.
- E. Kolstad, A Study of the Thermal Behaviour of LWR Fuel Designs under Transient Power Conditions, April 1984. NEA-1729/01, HWR-120.
- Database for Transient Temperature Experiment Ifa-507 in: OECD/NEA IFPE Database, 2020. NEA-1664-01, September.
- FALCON MOD01 Update 31 with GRSW-A V5.01, Code Management Report, 2022. Rev.1, 01.01.
- Fuel Modelling at Extended Burnup. Report of the Co-ordinated Research Programme on Fuel Modelling at Extended Burnup - FUMEX 1993-1996. IAEA-TECDOC-998.
- G. Khvostov, Specific Features of Fuel Rod Behaviour during RIA, ESB RIALOCA Seminar, Bottstein Castle, Switzerland, 2012, https://doi.org/10.13140/RG.2.2.25544.32001/1, 19-20 Januar.