DOI QR코드

DOI QR Code

Insights into fuel behaviour during relatively fast thermal transients based on calculations for two tests of the Halden IFA-507 experiment

  • Received : 2023.05.02
  • Accepted : 2023.06.25
  • Published : 2023.10.25

Abstract

Outcomes of the project "Comprehensive Verification of the FALCON Code for Calculation of Nuclear Fuel Temperature" relating to calculation of fuel temperature during relatively fast thermal transients are presented. Good prediction capabilities of the FALCON MOD01 code coupled with the GRSW-A code are shown as applied to the data of the TF3 and TF5 tests from the Transient Temperature Experiment IFA-507. The IFA-507 related dataset of the OECD/NEA International Fuel Performance Experiments (IFPE) Database is extended by the reconstructed dynamics of the axial power distribution in the rods during the transient phase of the experiment. Based on the code calculation, the time constant of the thermal fuel response to a power transient is estimated.

Keywords

Acknowledgement

The reporting research activity was carried out at Paul Scherrer Institute (PSI - Switzerland) within the STARS/ENSI RND Programme 2020-22, which was supported by the Swiss Federal Nuclear Safety Inspectorate (ENSI). The author is grateful to Dr. Gorzel, Andreas (ENSI) for the review of the paper manuscript.

References

  1. EPRI License Agreement, Agreement No. 03-0601 VP, 2004, 30.09. 
  2. Fuel Analysis and Licensing Code: FALCON MOD01, vol. 1, Theoretical and Numerical Bases, EPRI, Palo Alto, CA, 2004, 1011307. 
  3. Fuel Analysis and Licensing Code: FALCON MOD01, vol. 2, User's Manual, EPRI, Palo Alto, CA, 2004, 1011308. 
  4. Fuel Analysis and Licensing Code: FALCON MOD01, vol. 3, Verification and Validation, EPRI, Palo Alto, CA, 2004, 1011309. 
  5. G. Khvostov, A dynamic model for fission gas release and gaseous swelling integrated into the FALCON fuel analysis and licensing code, Proc. TOP Fuel 2009, Paris, France (2009) 2085. September 6-10. 
  6. G. Khvostov, W. Wiesenack, M.A. Zimmermann, G. Ledergerber, Some insights into the role of axial gas flow in fuel rod behaviour during the LOCA based on Halden tests and calculations with the FALCON-PSI code, Nucl. Eng. Des. 241 (5) (2011) 1500-1507, https://doi.org/10.1016/j.nucengdes.2011.03.003. 
  7. F. Ribeiro, G. Khvostov, Multi-scale approach to advanced fuel modelling for enhanced safety, Prog. Nucl. Energy 84 (2015) 24-35, https://doi.org/10.1016/j.pnucene.2015.03.022. 
  8. L.E. Herranz, I. Vallejo, G. Khvostov, J. Sercombe, G. Zhou, Assessment of fuel rod performance codes under ramp scenarios investigated within the SCIP project, Nucl. Eng. Des. 241 (3) (2011) 815-825, https://doi.org/10.1016/j.nucengdes.2011.01.007, 11. 
  9. G. Khvostov, W. Lyon, M.A. Zimmermann, Application of the FALCON code to PCI induced cladding failure and the effects of missing pellet surface, Ann. Nucl. Energy 62 (2013) 398-412, https://doi.org/10.1016/j.anucene.2013.07.002. 
  10. G. Khvostov, Analysis of cladding failure in a BWR fuel rod using a SLICE-DO model of the FALCON code, Nucl. Eng. Technol. 52 (12) (2020) 2887-2900, https://doi.org/10.1016/j.net.2020.05.015. 
  11. G. Khvostov, Numerical simulation of the effects of localized cladding oxidation on LWR fuel rod design limits using a SLICE-DO model of the FALCON code, Nucl. Eng. Technol. 52 (1) (2020) 135-147, https://doi.org/10.1016/j.net.2019.07.010. 
  12. G. Khvostov, Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring, Nucl. Eng. Technol. 50 (7) (2018) 1190-1197, https://doi.org/10.1016/j.net.2018.07.003. 
  13. G. Khvostov, A. Romano, M.A. Zimmermann, Modeling the effects of axial fuel relocation in the IFA-650.4 LOCA test, presented at the Enlarged Halden programme group meeting 2007, Storefjell, Norway (March 11-16, 2007) 14. 
  14. G. Khvostov, A. Pautz, E. Kolstad, G. Ledergerber, Analysis of a Halden LOCA test with the BWR high burnup fuel, in: LWR Fuel Performance Meeting, TopFuel, 2013, pp. 644-651, 2013. 
  15. G. Khvostov, Modelling effects of transient FGR in LWR fuel rods during a LOCA, J. Nucl. Mater. 559 (26) (2022), 153446, https://doi.org/10.1016/j.jnucmat.2021.153446. 
  16. G. Khvostov, Models for numerical simulation of burst FGR in fuel rods under the conditions of RIA, Nucl. Eng. Des. 328 (2018) 36-57, https://doi.org/10.1016/j.nucengdes.2017.12.028. 
  17. G. Khvostov, A. Gorzel, FALCON code-based analysis of PWR fuel rod behaviour during RIA transients versus new U.S.NRC and current Swiss failure limits, Nucl. Eng. Technol. 53 (11) (2021) 3741-3758, https://doi.org/10.1016/j.net.2021.06.001. 
  18. H. Ferroukhi, Proposal STARS/ENSI RND Activities 2020-2022. SB-PL-REC-010-19, PSI, September 2019. 
  19. OECD/NEA international fuel performance experiments (IFPE) database. Web. https://www.oecd-nea.org/jcms/pl_36360/ifpe-content. 
  20. G. Khvostov, Calibration and Validation of thermal fuel behaviour models based on the first case of the first IAEA CRP FUMEX, J. Nucl. Mater. (2023), https://doi.org/10.1016/j.jnucmat.2023.154588. 
  21. G. Khvostov, Analysis of thermal fuel behaviour under steady-state irradiation using selected cases of the IAEA CRP FUMEX, J. Nucl. Mater. (2023), https://doi.org/10.1016/j.jnucmat.2023.154589. 
  22. G. Khvostov, Interpretation of the online measurement data on thermal fuel behavior during the two bump-tests of the RISOE-III project, Paper Manuscript Under Prepar. Submitt. Nucl. Eng. Design j. (2023). 
  23. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Web, United States: N. p., 1976, pp. 113-144, https://doi.org/10.2172/7343826. 
  24. E. Kolstad, A Study of the Thermal Behaviour of LWR Fuel Designs under Transient Power Conditions, April 1984. NEA-1729/01, HWR-120. 
  25. Database for Transient Temperature Experiment Ifa-507 in: OECD/NEA IFPE Database, 2020. NEA-1664-01, September. 
  26. FALCON MOD01 Update 31 with GRSW-A V5.01, Code Management Report, 2022. Rev.1, 01.01. 
  27. Fuel Modelling at Extended Burnup. Report of the Co-ordinated Research Programme on Fuel Modelling at Extended Burnup - FUMEX 1993-1996. IAEA-TECDOC-998. 
  28. G. Khvostov, Specific Features of Fuel Rod Behaviour during RIA, ESB RIALOCA Seminar, Bottstein Castle, Switzerland, 2012, https://doi.org/10.13140/RG.2.2.25544.32001/1, 19-20 Januar.