DOI QR코드

DOI QR Code

기판과 무연솔더 계면에 전사된 그래핀 층의 금속간화합물 성장 지연 효과

Retarding Effect of Transferred Graphene Layers on Intermetallic Compound Growth at The Interface between A Substrate and Pb-free Solder

  • 고용호 (한국생산기술연구원 접합적층연구부문) ;
  • 유동열 (한국생산기술연구원 접합적층연구부문)
  • Yong-Ho Ko (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Dong-Yurl Yu (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2023.09.06
  • 심사 : 2023.09.20
  • 발행 : 2023.09.30

초록

본 연구에서는 Cu 기판 위에 그래핀(graphene)을 전사하고 Cu 기판 위에 Sn-3.0Ag-0.5Cu 무연(Pb-free) 솔더페이스트를 도포한 후에, 리플로우 솔더링 공정 및 다양한 온도(125, 150, 175 ℃)에서 등온 시효 1000 h 동안 Cu 기판과 솔더 계면에서 발생하는 금속간화합물(intermetallic compound, IMC)의 형성과 성장 거동에 전사된 graphene의 미치는 영향에 대하여 보고하였다. Graphene이 계면에 존재하는 경우 graphene이 존재하지 않은 경우와 비교할 때, 솔더링 공정 및 시효 동안 형성되어 성장하는 Cu6Sn5과 Cu3Sn IMC의 두께가 감소하는 것을 확인 할 수 있었다. 또한, 계면에 존재하는 전사된 graphene 층(layer)은 시효 온도와 시간에 따라 IMC들의 성장 거동과 관계된 Cu6Sn5과 Cu3Sn IMC의 성장 속도 상수와 성장 속도 상수 제곱 값들도 크게 감소시킬 수 있는 것으로 나타났다.

In this study, after transferring graphene on a Cu substrate and printing a Sn-3.0Ag-0.5Cu Pb-free solder paste on the Cu substrate, effects of the transferred graphene on formations and growths of intermetallic compound (IMC) at the interface between the Cu substrate and the solder were reported during processes of reflow soldering and isothermal aging for 1000 h with various temperatures (125, 150, and 175 ℃). Thicknesses of Cu6Sn5 and Cu3Sn IMCs at the interfaces with graphene were decreased during the reflow soldering and isothermal aging processes compared to those without graphene. The transferred graphene layers also showed that the growth rate constant and square of growth rate constant which related to the growth mechanisms of Cu6Sn5 and Cu3Sn IMCs with t he t emperature a nd t ime of t he i sothermal aging c ould dramatically decreased.

키워드

과제정보

이 연구는 2023년 인천시 반도체 후공정 소부장 산업경쟁력 강화사업 및 한국생산기술연구원의 지원을 받아 수행 되었습니다.

참고문헌

  1. H. Ma and J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging", J. Mater. Sci., 44(5), 1141 (2009).
  2. J. Glazer, "Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review", J. Electron. Mater., 23(8), 693 (1994). https://doi.org/10.1007/BF02651361
  3. X. Ma, F. Wang, Y. Qian, and F. Yoshida, "Development of Cu-Sn intermetallic compound at Pb-free solder/Cu joint interface", Mater. Lett., 57(22), 3361 (2003).
  4. K. Tu and R. Thompson, "Kinetics of interfacial reaction in bimetallic Cu-Sn thin films", Acta Metall., 30(5), 947 (1982).
  5. L. Xu, J. H. Pang, and F. Che, "Impact of thermal cycling on Sn-Ag-Cu solder joints and board-level drop reliability", J. Electron. Mater., 37(6), 880 (2008).
  6. R. E. Pratt, E. I. Stromswold, and D. J. Quesnel, "Effect of solid-state intermetallic growth on the fracture toughness of Cu/63Sn-37Pb solder joints", IEEE Trans. Compon. Packag. Manuf. Technol., 19(1), 134 (1996).
  7. F. Song and S. R. Lee, "Investigation of IMC thickness effect on the lead-free solder ball attachment strength: comparison between ball shear test and cold bump pull test results", Proc. 56th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1196, IEEE (2006).
  8. C.-S. Chung and H.-K. Kim, "Mechanical Behavior of Sn-3.0Ag-0.5Cu/Cu Solder Joints After Isothermal Aging", J. Electron. Mater., 45(1), 125 (2016). https://doi.org/10.1007/s11664-015-4170-1
  9. J.-W. Yoon, B.-I. Noh, and S.-B. Jung, "Comparison of Interfacial Stability of Pb-Free Solders (Sn-3.5 Ag, Sn-3.5Ag-0.7Cu, and Sn-0.7Cu) on ENIG-Plated Cu During Aging", IEEE Trans. Compon. Packag. Manuf. Technol., 33(1), 64 (2010).
  10. C.-L. Yeh and Y.-S. Lai, "Effects of solder alloy constitutive relationships on impact force responses of package-level solder joints under ball impact test", J. Electron. Mater., 35(10), 1892 (2006).
  11. I. Anderson, J. Foley, B. A. Cook, J. Harringa, R. Terpstra, and O. Unal, "Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability", J. Electron. Mater., 30(9), 1050 (2001).
  12. Y. Li, K.-S. Moon, and C. Wong, "Electronics without lead", Science, 308(5727), 1419 (2005).
  13. K. Kanlayasiri and K. Sukpimai, "Effects of indium on the intermetallic layer between low-Ag SAC0307-xIn lead-free solders and Cu substrate", J. Alloys Compd., 668, 169 (2016).
  14. T. Laurila, V. Vuorinen, and J. Kivilahti, "Interfacial reactions between lead-free solders and common base materials", Mater. Sci. Eng. R Rep., 49(1), 1 (2005).
  15. A. Sharif, Y. Chan, and R. A. Islam, "Effect of volume in interfacial reaction between eutectic Sn-Pb solder and Cu metallization in microelectronic packaging", Mater. Sci. Eng. B., 106(2), 120 (2004).
  16. J. Zhao, L. Qi, X.-M. Wang, and L. Wang, "Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder", J. Alloys Compd., 375(1), 196 (2004).
  17. L. Xu, J. H. Pang, K. H. Prakash, and T. Low, "Isothermal and thermal cycling aging on IMC growth rate in lead-free and lead-based solder interface", IEEE Trans. Compon. Packag. Manuf. Technol., 28(3), 408 (2005).
  18. W. Peng, E. Monlevade, and M. E. Marques, "Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu", Microelectron. Reliab., 47(12), 2161 (2007).
  19. M. G. Cho, S. K. Kang, D.-Y. Shih, and H. M. Lee, "Effects of minor additions of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal aging", J. Electron. Mater., 36(11), 1501 (2007). https://doi.org/10.1007/s11664-007-0254-x
  20. C. C. Lee, P. J. Wang, and J. S. Kim, "Are intermetallics in solder joints really brittle?", Proc. 57th Electronic Components and Technology Conference (ECTC), Sparks, NV, USA, 648, IEEE (2007).
  21. L. Gao, S. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai, S.-L. Yu, and G. Zeng, "Effect of alloying elements on properties and microstructures of SnAgCu solders", Microelectron. Eng., 87(11), 2025 (2010).
  22. C. Wu, D. Yu, C. Law, and L. Wang, "Properties of lead-free solder alloys with rare earth element additions", Mater. Sci. Eng. R Rep., 44(1), 1 (2004).
  23. Y. Wang, X. Zhao, X. Xie, Y. Gu, and Y. Liu, "Effects of nano-SiO2 particles addition on the microstructure, wettability, joint shear force and the interfacial IMC growth of Sn3.0Ag0.5Cu solder", J. Mater. Sci. Mater. Electron., 26(12), 9387 (2015).
  24. Y. Tang, G. Li, and Y. Pan, "Influence of TiO2 nanoparticles on IMC growth in Sn-3.0Ag-0.5Cu-xTiO2 solder joints in reflow process", J. Alloys Compd., 554, 195 (2013).
  25. L. Tsao, "Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging", J. Alloys Compd., 509(33), 8441 (2011).
  26. S. Chellvarajoo and M. Abdullah, "Microstructure and mechanical properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process", Mater. Des., 90, 499 (2016).
  27. A. K. Gain, T. Fouzder, Y. C. Chan, and W. K. Yung, "Microstructure, kinetic analysis and hardness of Sn-Ag-Cu-1wt% nano-ZrO2 composite solder on OSP-Cu pads", J. Alloys Compd., 509(7), 3319 (2011).
  28. Y. K. Jee, Y. H. Ko, and J. Yu, "Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad", J. Mater. Res., 22(07), 1879 (2007).
  29. S. K. Kang, D. Leonard, D.-Y. Shih, L. Gignac, D. Henderson, S. Cho, and J. Yu, "Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition", J. Electron. Mater., 35(3), 479 (2006).
  30. L. Zhang, S. B. Xue, G. Zeng, L. L. Gao, and H. Ye, "Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging", J. Alloys Compd., 510(1), 38 (2012).
  31. M. Rizvi, Y. Chan, C. Bailey, H. Lu, and M. Islam, "Effect of adding 1wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging", J. Alloys Compd., 407(1), 208 (2006).
  32. S. Nai, J. Wei, and M. Gupta, "Interfacial intermetallic growth and shear strength of lead-free composite solder joints", J. Alloys Compd., 473(1), 100 (2009).
  33. X. Hu, Y. Chan, K. Zhang, and K. Yung, "Effect of graphene doping on microstructural and mechanical properties of Sn-8Zn-3Bi solder joints together with electromigration analysis", J. Alloys Compd., 580, 162 (2013).
  34. D. Ma and P. Wu, "Improved microstructure and mechanical properties for Sn58Bi0.7Zn solder joint by addition of graphene nanosheets", J. Alloys Compd., 671, 127 (2016).
  35. K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-E. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306(5696), 666 (2004).
  36. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321(5887), 385 (2008).
  37. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6(3), 183 (2007).
  38. S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, "Tailored assembly of carbon nanotubes and graphene", Adv. Funct. Mater., 21(8), 1338 (2011).
  39. Y.-H. Ko, J.-D. Lee, T. Yoon, C.-W. Lee, and T.-S. Kim, "Controlling interfacial reactions and intermetallic compound growth at the interface of a lead-free solder joint with layer-by-layer transferred graphene", ACS Appl. Mater. Interfaces, 8(8), 5679 (2016). https://doi.org/10.1021/acsami.5b11903
  40. G. Lu, B. Lin, Z. Gao, W. Zhang, Y. Li, F. Wei, Y. Sui, J. Qi, Q. Meng, and Y. Ren, "Nickel Nanoparticle/Carbon Films as an Interlayer To Improve the Stability of Solder Joints", ACS Appl. Nano Mater, 6(7), 5844 (2023).
  41. G. Lu, Z. Gao, B. Lin, Y. Li, F. Wei, Y. Sui, J. Qi, Q. Meng, Y. Ren, and Q. Yan, "Effects of Co Nanoparticles Embedded in Carbon Skeleton Nanosheet Addition to Sn-0.7Cu Solder on the Interfacial Reaction", ACS Appl. Nano Mater, 6(2), 1413 (2023).
  42. Y. Li, S. Yu, L. Li, S. Song, W. Qin, D. Qi, W. Yang, and Y. Zhan, "A Review on the Development of Adding Graphene to Sn-Based Lead-Free Solder", Metals, 13(7), 1209 (2023).
  43. Y.-H. Ko, K. Son, G. Kim, Y.-B. Park, D.-Y. Yu, J. Bang, and T.-S. Kim, "Effects of graphene oxide on the electromigration lifetime of lead-free solder joints", J. Mater. Sci. Mater. Electron., 30, 2334 (2019).
  44. X. Yin, C. Wu, Z. Zhang, W. Yang, C. Xie, X. Yang, and Z. Huang, "Highly reliable Cu-Cu low temperature bonding using SAC305 solder with rGO interlayer", Microelectron. Reliab., 129, 114483 (2022).
  45. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett., 97(18), 187401 (2006).
  46. L. M. Lee and A. A. Mohamad, "Interfacial reaction of Sn-Ag-Cu Lead-Free solder alloy on Cu: a review", Adv. Mater. Sci. Eng., 2013, 1 (2013).
  47. W. K. Choi and H. M. Lee, "Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate", J. Electron. Mater., 29(10), 1207 (2000). https://doi.org/10.1007/s11664-000-0014-7
  48. X. Deng, R. Sidhu, P. Johnson, and N. Chawla, "Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints", Metall. Mater. Trans. A, 36(1), 55 (2005).
  49. J.-W. Yoon, S.-W. Kim, and S.-B. Jung, "IMC growth and shear strength of Sn-Ag-Bi-In/Au/Ni/Cu BGA joints during aging", Mater. Trans., 45(3), 727 (2004).
  50. C.-H. Wang, H.-H. Chen, P.-Y. Li, and P.-Y. Chu, "Kinetic analysis of Ni5Zn21 growth at the interface between Sn-Zn solders and Ni", Intermetallics, 22, 166 (2012).
  51. F. Gao and J. Qu, "Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations", Mater. Lett., 73, 92 (2012).
  52. S. Malola, H. Hakkinen, and P. Koskinen, "Gold in graphene: in-plane adsorption and diffusion", Appl. Phys. Lett., 94(4), 043106 (2009).
  53. J. A. RodriGuez-Manzo, O. Cretu, and F. Banhart, "Trapping of metal atoms in vacancies of carbon nanotubes and graphene", ACS Nano, 4(6), 3422 (2010).