DOI QR코드

DOI QR Code

천연 잔골재와 바텀애시 골재를 활용한 다공성 콘크리트의 강도 특성

Strength Properties of Porous Concrete Containing Natural Fine Aggregate and Bottom Ash Aggregate

  • 정승태 (군산대학교 토목공학과) ;
  • 박지훈 (한국건설기술연구원 구조연구본부) ;
  • 양인환 (군산대학교 토목공학과)
  • Seung-Tae Jeong (Department of Civil Engineering, Kunsan National University) ;
  • Ji-Hun Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • In-Hwan Yang (Department of Civil Engineering, Kunsan National University)
  • 투고 : 2023.07.13
  • 심사 : 2023.08.01
  • 발행 : 2023.09.30

초록

본 논문에서는 천연 잔골재와 바텀애시 골재를 사용한 다공성 콘크리트의 강도 특성을 분석하였다. 본 연구에서는 천연 잔골재와 바텀애시를 사용하여 각 골재의 재료 특성을 파악 한 후, 다공성 콘크리트의 골재로 사용하였다. 물-바인더 비는 0.25으로 고정하고, 가압다짐 수준을 0.5, 1.5 및 2.5 MPa 값으로 지정하여 다공성 콘크리트 시편을 제작하였다. 단위질량, 초음파속도, 압축강도, 및 휨인장강도를 실험을 진행하고 분석을 수행하였다. 가압다짐 수준이 증가하고, 바텀애시 대비 잔골재 치환율이 증가하면 단위질량, 초음파속도, 압축강도 및 휨인장강도는 증가하였다. 또한, 회귀분석을 통해 다공성 콘크리트의 단위질량과 압축강도 및 휨인장강도의 상관관계를 제시하였다. 단위질량과 강도 특성은 서로 비례하며 증가하는 상관관계를 나타냈다. 또한, 본 연구의 실험별 회귀 분석을 선행연구와 해외 논문의 실험 결과와 비교하여 상관계수(R2) 값을 분석하였다.

In this paper, the strength properties of porous concrete containing natural fine aggregates and bottom ash aggregates were investigated, The material properties of natural fine aggregates and bottom ash were identified then used as aggregates for porous concrete. The water-binder ratio was constant at 0.25, and the com paction level of 0.5, 1.5, and 2.5 MPa was applied to produce a porous concrete specimen. Test of unit weight, ultrasonic velocity, compressive strength, and flexural tensile strength were perform ed and analyzed. The unit weight, ultrasonic velocity, com pressive strength, and flexural tensile strength increased as the compaction level increased and also the replacement rate of bottom ash with sand(fine aggregate) increased. In addition, through regression analysis, the correlation between the unit weight, compressive strength, and flexural tensile strength of bottom ash porous concrete was presented. Unit weight and strength properties are proportional to each other and showed an increasing correlation. In addition, the correlation coefficient (R2) value of regression analysis was calculated based on the experimental results of this study and those of other research papers.

키워드

과제정보

본 연구는 국토교통기술촉진연구사업의 지원을 받아 연구되었습니다(21CTAP-C164197-01).

참고문헌

  1. American Concrete Institute (2010). Report on Pervious Concrete, ACI committee 522, Farmington, Hills., MI, Michigan. U.S.A., 1-42. 
  2. Anandaraj, S., Karthik, S., Sylesh, S., Kishor, R., Suresh, K., Prakash, K.J., Kannan, K.D. (2023). Experimental investigation on sugarcane bagasse fiber reinforced concrete using bottom ash as sand replacement, Materials Today: Proceedings. 
  3. Belaid, F. (2022). How does concrete and cement industry transformation contribute to mitigating climate change challenges?, Resources, Conservation & Recycling Advances, 15, 200084. 
  4. Chandrappa, A.K., Biligiri, K.P. (2016). Pervious concrete as a sustainable pavement material-research findings and future prospects: a state-of-the-art review, Construction and Building Materials, 111, 262-274.  https://doi.org/10.1016/j.conbuildmat.2016.02.054
  5. Embong, R., Kusbiantoro, A., Muthusamy, K., Ismail, N. (2021). Recycling of coal bottom ash (CBA) as cement and aggregate replacement material: a review, IOP Conference Series: Earth and Environmental Science, 682(1), 012035. 
  6. Huang, B., Wu, H., Shu, X., Burdette, E.G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete, Construction and Building Materials, 24(5), 818-823.  https://doi.org/10.1016/j.conbuildmat.2009.10.025
  7. Jang, J.G., Ahn, Y.B., Souri, H., Lee, H.K. (2015). A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength, Construction and Building Materials, 79, 173-181.  https://doi.org/10.1016/j.conbuildmat.2015.01.058
  8. Jeong, S.T., Kim, B.S., Park, J.H., Yang, I.H. (2021). An experimental study on thermal property of porous concrete containing bottom ash, Korean Recycled Construction Resources Institute, 9(4), 625-632 [in Korean]. 
  9. Kim, J.E., Kim, H.K. (2022). Environment and economic assessment of mortar with coal bottom ash fine aggregate based on equivalent-strength and -durability ddesign, Proceedings of the Korea Concrete Institute, 34(2), 375-376 [in Korean]. 
  10. Menendez, E., Alvaro, A.M., Hernandez, M.T., Parra, J.L. (2014). New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash, Journal of environmental management, 133, 275-283.  https://doi.org/10.1016/j.jenvman.2013.12.009
  11. Ngohpok, C., Sata, V., Satiennam, T., Klungboonkrong, P., Chindaprasirt, P. (2018). Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates, KSCE Journal of Civil Engineering, 22, 1369-1376.  https://doi.org/10.1007/s12205-017-0144-6
  12. Nguyen, D.H., Boutouil, M., Sebaibi, N., Baraud, F., Leleyter, L. (2017). Durability of pervious concrete using crushed seashells, Construction and Building Materials, 135, 137-150.  https://doi.org/10.1016/j.conbuildmat.2016.12.219
  13. Park, J.H., Jeong, S.T., Bui, Q.T., Yang, I.H. (2022). Strength and permeability properties of pervious concrete containing coal bottom ash aggregates, Materials, 15(21), 7847. 
  14. Park, S. B., & Tia, M. (2004). An experimental study on the water-purification properties of porous concrete, Cement and Concrete Research, 34(2), 177-184.  https://doi.org/10.1016/S0008-8846(03)00223-0
  15. Park, S.B., Jang, Y.I., Lee, J., Lee, B.J. (2009). An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea, Journal of Hazardous Materials, 166(1), 348-355.  https://doi.org/10.1016/j.jhazmat.2008.11.054
  16. Shen, P., Zheng, H., Lu, J., Poon, C.S. (2021). Utilization of municipal solid waste incineration bottom ash (IBA) aggregates in high-strength pervious concrete, Resources, Conservation and Recycling, 174, 105736. 
  17. Siddique, R. (2010). Use of municipal solid waste ash in concrete, Resources, Conservation and Recycling, 55(2), 83-91.  https://doi.org/10.1016/j.resconrec.2010.10.003
  18. Singh, M. (2018). 1-Coal bottom ash, Waste and Supplementary Cementitious Materials in Concrete, 2018, 3-50. 
  19. Singh, N., Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement, Construction and Building Materials, 233, 117276. 
  20. Singh, N., Mithulraj, M., Arya, S. (2019). Utilization of coal bottom ash in recycled concrete aggregates based self compacting concrete blended with metakaolin, Resources, Conservation and Recycling, 144, 240-251.  https://doi.org/10.1016/j.resconrec.2019.01.044
  21. Yang, I.H., Jeong, S,T., Park, J,H. (2022a). A study on the correlation between strength and compaction of porous concrete using bottom ash aggregate, Journal of the Korean Recycled Construction Resources Institute, 10(4), 359-366 [in Korean]. 
  22. Yang, I.H., Jeong, S.T., Park, J.H. (2022b). Effects of the compaction and size of bottom ash aggregate on thermal conductivity of porous concrete, Journal of the Korean Recycled Construction Resources Institute, 10(3), 195-203 [in Korean]. 
  23. Yang, I.H., Park, J.H., Jung, H.W. (2020). An experimental study on the thermal conductivity of concrete containing coal bottom ash aggregate, XV International Conference on Durability of Building Materials and Components (DBMC 2020), 1-6. 
  24. Yang, J., Jiang, G. (2003). Experimental study on properties of pervious concrete pavement materials, Cement and Concrete Research, 33(3), 381-386.  https://doi.org/10.1016/S0008-8846(02)00966-3
  25. Zhong, R., Wille, K. (2016). Compression response of normal and high strength pervious concrete, Construction and Building Materials, 109, 177-187.  https://doi.org/10.1016/j.conbuildmat.2016.01.051