DOI QR코드

DOI QR Code

부산물 분체 및 굵은 골재를 활용한 프리팩트형 열전도성 되메움재의 성능

Performances of Prepacked-Type Thermal Conductive Backfills Incorporating Byproduct Powders and Aggregates

  • Sang-Min Jeon (Department of Architectural Engineering, Chosun University) ;
  • Young-Sang Kim (Department of Civil Engineering, Chonnam National University) ;
  • Ba-Huu Dinh (Department of Civil Engineering, Chonnam National University) ;
  • Jin-Gyu Han (Chemius Korea Co. Ltd.) ;
  • Yong-Sun Ryu (Chemius Korea Co. Ltd.) ;
  • Hyeong-Ki Kim (Department of Architectural Engineering, Chosun University)
  • 투고 : 2023.05.31
  • 심사 : 2023.06.22
  • 발행 : 2023.09.30

초록

이 연구는, 프리팩트 콘크리트 공법을 적용하여, 상대적으로 높은 열전도도를 가진 굵은 골재를 먼저 채우고 이 사이를 고유동성 그라우트로 충전하는 개념의 열전도도성 되메움재를 개발하는 것을 목표로 한다. 열전도도가 개선된 되메움재는 지중열 교환기 혹은 지중 송전설비의 열교환 효율을 높일 수 있다. 부순 콘크리트를 골재로, 그라우트는 플라이애시 기반으로 설정하였으며, 소량의 시멘트를 사용하여 고화하였다. 연구 결과, ASTM D 6103 기준 플로우 450 mm 이상의 유동성을 갖는 플라이애시-시멘트-가는 모래 기반 그라우트를 사용하여 최대 25 mm 크기의 자갈을 충전할 수 있음을 확인하였다. 또한 자갈로 충전된 되메움재의 열전도도는 1.7 W/m·K 이상으로, 자갈 없이 유동화된 그라우트로는 달성할 수 없는 높은 열전도도를 보였다.

This study aims to develop a thermally conductive backfill by applying the prepacked concrete concept, in which a coarse aggregate with relatively high thermal conductivity was first filled and then the voild filled with grout. Backfill with improved thermal conductivity can increase the heat exchange efficiency of underground heat exchangers or underground transmission facilities. The backfills was prepared by using crushed concrete as the coarse aggregate, fly ash-based grout, and a small amount of cement for solidification. The results of this study showed that the fly ash-cement-sand-based grout with a flow of at least 450 mm accor ding to ASTM D 6103 could fill the void of pr epactked coar se aggr egates with a maximum size of 25 mm. The thermal conductivity of the backfil with coarse aggregate was over 1.7 W/m·K, which was higher than that of grout-type backfills.

키워드

과제정보

본 연구는 국토교통부(21RITD-C162546-01) 및 한국연구재단지자체-대학 협력기반 지역혁신 사업(과제관리번호: 2021RIS-002) 연구비 지원으로 수행된 연구이며, 연구비 지원에 감사드립니다.

참고문헌

  1. Abbasy, F., Hassani, F.P., Madiseh, S.A.G., Cote, J., Nokken, M.R. (2014). An experimental study on the effective parameters of thermal conductivity of mine backfill, Heat transfer engineering, 35(13), 1209-1224.  https://doi.org/10.1080/01457632.2013.870373
  2. Ahmad, S., Rizvi, Z., Khan, M.A., Ahmad, J., Wuttke, F. (2019). Experimental study of thermal performance of the backfill material around underground power cable under steady and cyclic thermal loading, Materials today: proceedings, 17, 85-95.  https://doi.org/10.1016/j.matpr.2019.06.404
  3. Dinh, B.H., Kim, Y.S., Yoon, S. (2022). Experimental and numerical studies on the performance of horizontal U-type and spiral-coil-type ground heat exchangers considering economi aspects, Renewable Energy, 186, 505-516.  https://doi.org/10.1016/j.renene.2022.01.001
  4. Jang, J.G., Park, S.M., Chung, S., Ahn, J.W., Kim, H.K. (2018). Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator, Construction and Building Materials, 159, 642-651.  https://doi.org/10.1016/j.conbuildmat.2017.08.158
  5. Kim, Y.S., Dinh, B.H., Do, T.M., Kang, G.O. (2020). Development of thermally enhanced controlled low-strength material incorporating different types of steel-making slag for ground-source heat pump system, Renewable Energy, 150, 116-127.  https://doi.org/10.1016/j.renene.2019.12.129
  6. Kim, Y.S., Do, T.M., Kim, M.J., Kim, B.J., Kim, H.K. (2018). Utilization of by-product in controlled low-strength material for geothermal systems: Engineering performances, environmental impact, and cost analysis, Journal of Cleaner Production, 172, 909-920.  https://doi.org/10.1016/j.jclepro.2017.10.260
  7. Oclon, P., Bittelli, M., Cisek, P., Kroener, E., Pilarczyk, M., Taler, D., Rao, R.V., Vallati, A. (2016). The performance analysis of a new thermal backfill material for underground power cable system, Applied Thermal Engineering, 108, 233-250.  https://doi.org/10.1016/j.applthermaleng.2016.07.102
  8. Wan, R., Kong, D., Kang, J., Yin, T., Ning, J., Ma, J. (2018). The experimental study on thermal conductivity of backfill material of ground source heat pump based on iron tailings, Energy and Buildings, 174, 1-12.  https://doi.org/10.1016/j.enbuild.2018.06.010
  9. Wang, H., Cui, Y., Qi, C. (2013). Effects of sand-bentonite backfill materials on the thermal performance of borehole heat exchangers, Heat transfer engineering, 34(1), 37-44.  https://doi.org/10.1080/01457632.2013.694771
  10. Zhao, Y., Liu, L., Wen, D., Zhang, X., Huan, C., Zhang, B., Wang, X. (2022). Recycling waste material for backfill coupled heat exchanger systems in underground stopes of mines, Energy and Buildings, 256, 111703.