DOI QR코드

DOI QR Code

Positional deviation between CBCT-based digital facebow transfer and analog facebow transfer: case series

CBCT 기반 디지털 안궁이전과 아날로그 안궁이전의 위치 편차: 증례보고

  • Myung Hyun Park (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Keunbada Son (Advanced Dental Device Development Institute, Kyungpook National University) ;
  • Hwi-Gyun Ahn (Advanced Dental Device Development Institute, Kyungpook National University) ;
  • Du-Hyeong Lee (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • So-Yeun Kim (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Kyu-Bok Lee (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 박명현 (경북대학교 치과병원 치과보철학교실) ;
  • 손큰바다 (경북대학교 첨단치과의료기기개발연구소) ;
  • 안휘균 (경북대학교 첨단치과의료기기개발연구소) ;
  • 이두형 (경북대학교 치과병원 치과보철학교실) ;
  • 김소연 (경북대학교 치과병원 치과보철학교실) ;
  • 이규복 (경북대학교 치과병원 치과보철학교실)
  • Received : 2023.09.06
  • Accepted : 2023.09.14
  • Published : 2023.09.30

Abstract

Facebow transfer is essential for accurately mounting a dental cast onto a semi-adjustable articulator. The precision of traditional analog facebow transfer is influenced by both the accuracy of the equipment used and the skill level of the operator. Considering that substantial positional deviations can adversely affect the quality of a fabricated dental prosthesis; it is critical to assess the positional accuracy of casts mounted using analog facebow transfer. This case report evaluates the linear and angular deviations of the occlusal plane for maxillary casts mounted through both analog facebow transfer and cone-beam computed tomography-based methods. The findings indicate that analog facebow transfer produced a linear deviation ranging from 3 to 16 mm and an angular deviation of the occlusal plane between 5 to 7 degrees. This case report confirms that, across two patients, analog facebow transfer can result in varying degrees of positional deviation, thereby potentially leading to inaccuracies in the fabrication of dental prostheses. These results suggest that, in clinical practice, the use of analog facebow transfer may yield significant deviations during the process of mounting maxillary casts.

조절성 교합기에 모형을 부착하기 위하여 안궁이전이 필요하다. 아날로그 안궁이전에서는 장비의 정확도와 작업자의 숙련도가 모형 부착 결과에 영향을 미칠 가능성이 있다. 더불어 편차가 큰 방법으로 부착된 작업 모형에서는 정확한 치과 보철물의 제작이 어려우므로, 아날로그 안궁이전으로 부착된 작업 모형의 위치 편차를 파악하는 것이 중요하다. 본 증례에서는 아날로그 안궁이전으로 부착된 상악 모형의 위치와 cone beam computed tomography 데이터를 기반으로 위치된 상악 모형의 위치를 거리 편차와 교합 평면의 각도 편차를 평가하였다. 이를 토대로 아날로그 안궁이전으로 부착된 상악 모형의 편차를 보고하였다. 아날로그 안궁이전 방법은 3 - 16 mm의 선형 편차와 5 - 7도의 교합평면 각도 편차를 가지는 상악 모형의 부착 결과를 나타내었다. 아날로그 안궁이전은 환자별로 위치 편차가 다를 수 있음을 확인했으며, 치과 보철물 제작에서의 부정확성을 초래할 가능성이 있다. 이러한 결과는 임상에서 아날로그 안궁이전 방법이 상악 모형을 부착하는 과정에서 큰 편차가 있을 수 있음을 나타내었기에 이를 보고하는 바이다.

Keywords

Acknowledgement

The authors thank the researchers at the Advanced Dental Device Development Institute, Kyungpook National University, for their time and contribution to the study. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT, No.2022R1C1C2007040). This research was supported by the Bio Industry Technology Development Program of the Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry and Energy (20018114).

References

  1. Son K, Lee JM, Lee KB. Marginal and internal fit and intaglio surface trueness of temporary crowns fabricated with stereolithography, digital light processing, and milling technology. Int J Prosthodont 2022;35:697-701.  https://doi.org/10.11607/ijp.7764
  2. Lee H, Son K, Lee DH, Kim SY, Lee KB. Comparison of wear of interim crowns in accordance with the build angle of digital light processing 3D printing: A preliminary in vivo study. Bioengineering 2022;9:417. 
  3. Son K, Kim GR, Kim WG, Kang W, Lee DH, Kim SY, Lee JM, Kim YG, Kim JW, Lee ST, Jin MU, Kim HJ, Lee J, Kim JR, Lee KB. Requirements for Dental CAD Software: A Survey of Korean Dental Personnel. Appl Sci 2023;13:2803. 
  4. Yang S, Dong B, Zhang Q, Li J, Yuan Q, Yue L. An indirect digital technique to transfer 3D printed casts to a mechanical articulator with individual sagittal condylar inclination settings using CBCT and intraoral scans. J Prosthodont 2022;31:822-7.  https://doi.org/10.1111/jopr.13570
  5. Revilla-Leon M, Zeitler JM, Barmak AB, Kois JC. Accuracy of the 3-dimensional virtual patient representation obtained by using 4 different techniques: an in vitro study. J Prosthet Dent 2022 Jun 27;S0022-3913(22)00342-0. doi: 10.1016/j.prosdent.2022.05.016. Online ahead of print. 
  6. Li J, Sommer C, Wang HL, Lepidi L, Joda T, Mendonca G. Creating a virtual patient for completely edentulous computer-aided implant surgery: A dental technique. J Prosthet Dent 2021;125:564-8.  https://doi.org/10.1016/j.prosdent.2020.02.026
  7. Mai HN, Win TT, Tong MS, Lee CH, Lee KB, Kim SY, Lee HW, Lee DH. Three-dimensional morphometric analysis of facial units in virtual smiling facial images with different smile expressions. J Adv Prosthodont 2023;15:1-10.  https://doi.org/10.4047/jap.2023.15.1.1
  8. Urdalleta DPC, Olmedo RR, Fabrega FRC, Picand JLB. Individual variation of the distance between nasion and Frankfort horizontal plane - an error factor of facebow in semi-adjustable articulators. J Prosthet Dent 2022;128:604.e1-5.  https://doi.org/10.1016/j.prosdent.2022.07.007
  9. Bowley JF, Michaels GC, Lai TW, Lin PP. Reliability of a facebow transfer procedure. J Prosthet Dent 1992;67:491-8.  https://doi.org/10.1016/0022-3913(92)90079-P
  10. Thompson GA, Nick C, Francisco P, Lux L, Wiens JP. Comparison of two arbitrary cast transfer systems with a kinematic facebow for mounting a maxillary cast on a semiadjustable articulator. J Prosthet Dent 2022;128:597-603.  https://doi.org/10.1016/j.prosdent.2020.12.023
  11. Pitchford JH. A reevaluation of the axis-orbital plane and the use of orbitale in a facebow transfer record. J Prosthet Dent 1991;66:349-55.  https://doi.org/10.1016/0022-3913(91)90262-U
  12. Zambrana N, Sesma N, Fomenko I, Dakir EI, Pieralli S. Jaw tracking integration to the virtual patient: A 4D dynamic approach. J Prosthet Dent 2022 Mar 16;S0022-3913(22)00110-X. doi: 10.1016/j.prosdent.2022.02.011. Online ahead of print. 
  13. Li J, Sommer C, Wang HL, Lepidi L, Joda T, Mendonca G. Creating a virtual patient for completely edentulous computer-aided implant surgery: A dental technique. J Prosthet Dent 2021;125:564-8.  https://doi.org/10.1016/j.prosdent.2020.02.026
  14. Li J, Chen Z, Decker AM, Wang HL, Joda T, Mendonca G, Lepidi L. Trueness and precision of economical smartphone-based virtual facebow records. J Prosthodont 2022;31:22-9.  https://doi.org/10.1111/jopr.13366
  15. Inoue N, Scialabba R, Lee JD, Lee SJ. A comparison of virtually mounted dental casts from traditional facebow records, average values, and 3D facial scans. J Prosthet Dent 2022 Apr 2;S0022-3913(22)00146-9. doi: 10.1016/j.prosdent.2022.03.001. Online ahead of print. 
  16. Amezua X, Iturrate M, Garikano X, Solaberrieta E. Analysis of the influence of the facial scanning method on the transfer accuracy of a maxillary digital scan to a 3D face scan for a virtual facebow technique: An in vitro study. J Prosthet Dent 2022;128:1024-31.  https://doi.org/10.1016/j.prosdent.2021.02.007
  17. Palaskar JN, Joshi N, Gullapalli P, Shah P. Comparative evaluation of sagittal inclination of the occlusal plane with Frankfort horizontal plane in facebow transfers to semiadjustable and fully adjustable articulators. J Prosthet Dent 2020;123:299-304.  https://doi.org/10.1016/j.prosdent.2018.12.024
  18. Maveli TC, Suprono MS, Kattadiyil MT, Goodacre CJ, Bahjri K. In vitro comparison of the maxillary occlusal plane orientation obtained with five facebow systems. J Prosthet Dent 2015;114:566-73. https://doi.org/10.1016/j.prosdent.2015.02.030