DOI QR코드

DOI QR Code

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials

전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구

  • 고영훈 (한국건설기술연구원 지반연구본부)
  • Received : 2023.07.17
  • Accepted : 2023.08.01
  • Published : 2023.09.30

Abstract

A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

근접 폭발로 인해 발생하는 폭발 충격파의 위험을 완화하기 위한 기술에 대한 기초 평가를 수행하였다. 기존의 일반적인 기술로는 폭발물 주변이나 충격파의 진행 방향에 방호물질을 사용하여 차단막을 형성하는 방법이 사용되었다. 다양한 폭발 에너지 분산 메커니즘이 제안되었으며, 임피던스 차이를 활용한 폭발 충격파 완화에 대한 연구가 많은 관심을 받고 있다. 본 연구에서는 전단농화유체(STF)를 충격완화물질로 적용하여 폭발 충격파 완화에 대한 폭발실험 및 수치해석을 통해 STF 완화물질의 효과를 평가하였다. 그 결과로써 STF 완화물질의 폭발 충격압 감쇄성능의 실효성을 확인할 수 있었다.

Keywords

References

  1. Allen, R. M., Kirkpatrick, D. J., Longbottom, A. W., Milne, A. M., Bourne, N. K., 2004, Experimental and numerical study of free-field blast mitigation, AIP Conference Proceedings, 706, pp. 823-826.
  2. Britan, A., Ben-Dor, G., Igra, O., & Shapiro, H., 2001, Shock waves attenuation by granular filters. International Journal of Multiphase Flow, 27(4), pp. 617-634. https://doi.org/10.1016/S0301-9322(00)00048-3
  3. Cheng, M., Hung, K.C., Chong, O.Y., 2005, Numerical study of water mitigation effects on blast wave, Shock Waves, 14(3), pp. 217-223. https://doi.org/10.1007/s00193-005-0267-4
  4. Endo, K., Kitagawa, K., & Yasuhara, M., 2009, Diffusion effect of blast pressure in porous complex media. In: 39th AIAA Fluid Dynamics Conference.
  5. Kitagawa, K., Yamashita, S., Takayama, K., & Yasuhara, M., 2009, Attenuation properties of blast wave through porous layer, Shock Waves, pp. 73-78.
  6. Ko, Y. and Kwak, K., 2022, Blast effects of a shear thickening fluid-based stemming material, Mining, Vol. 2, pp. 330-349. https://doi.org/10.3390/mining2020018
  7. Medvedev, S.P., Frolov, S.M., Gel'fand, B.E., 1990, Attenuation of shock waves by screens of granular material, J. Eng. Phys., 58(6), pp. 714-718. https://doi.org/10.1007/BF00872723
  8. Nesterenko, V.F., 2003, Shock (blast) mitigation by soft condensed matter, In: MRS Symp. Proc., 759, pp. 11-12.
  9. Riedel, W., Thomas, K., Hiermaier, S., Schmolinske, E., 1999, Penetration of Reinfored Concrete by BETA-B-500 Numerical Analysis using a New Macroscopic Concrete Model for Hydrocodes, 9th International Symposium on the Interaction of the Effects of Munitions with Structures, pp. 315-322.
  10. Wu, X., Yin, Q. and Huang, C., 2015, Experimental study on pressure stress state and temperature-dependent dynamic behavior of shear thickening fluid subjected to laser induced shock, Journal of Applied Physics, Vol. 118, pp. 173.