DOI QR코드

DOI QR Code

Mathematical Modeling of the Tennis Serve: Adaptive Tasks from Middle and High School to College

  • Thomas Bardy (Department of Mathematics Education, University of Applied Sciences and Arts) ;
  • Rene Fehlmann (Department of Mathematics Education, University of Teacher Education)
  • Received : 2023.02.10
  • Accepted : 2023.04.21
  • Published : 2023.09.30

Abstract

A central problem of mathematics teaching worldwide is probably the insufficient adaptive handling of tasks-especially in computational practice phases and modeling tasks. All students in a classroom must often work on the same tasks. In the process, the high-achieving students are often underchallenged, and the low-achieving ones are overchallenged. This publication uses different modeling of the tennis serve as an example to show a possible solution to the problem and develops and discusses one adaptive task each for middle school, high school, and college using three mathematical models of the tennis serve each time. From model to model within the task, the complexity of the modeling increases, the mathematical or physical demands on the students increase, and the new modeling leads to more realistic results. The proposed models offer the possibility to address heterogeneous learning groups by their arrangement in the surface structure of the so-called parallel adaptive task and to stimulate adaptive mathematics teaching on the instructional topic of mathematical modeling. Models A through C are suitable for middle school instruction, models C through E for high school, and models E through G for college. The models are classified in the specific modeling cycle and its extension by a digital tool model, and individual modeling steps are explained. The advantages of the presented models regarding teaching and learning mathematical modeling are elaborated. In addition, we report our first teaching experiences with the developed parallel adaptive tasks.

Keywords

References

  1. Bardy, T., Holzapfel, L., & Leuders, T. (2021). Adaptive tasks as a differentiation strategy in the mathematics classroom: Features from research and teachers' views. Mathematics Teacher Education and Development, 23(3), 25-53.
  2. Beck, E., Baer, M., Guldimann, T., Bischoff, S., Bruhwiler, C., Muller, P., Niedermann, R., Rogalla, M., & Vogt, F. (2008). Adaptive Lehrkompetenz [Adaptive teaching skills]. Waxmann.
  3. Blum, W. (1985). Anwendungsorientierter Mathematikunterricht in der didaktischen Diskussion [Application-oriented mathematics teaching in the didactic discussion]. Mathematische Semesterberichte, 32(2), 195-232.
  4. Blum, W. (1996). Anwendungsbezuge im Mathematikunterricht-Trends und Perspektiven [Application references in mathematics education-Trends and perspectives]. In G. Kadunz, H. Kautschitsch, G. Ossimitz & E. Schneider (Eds.), Trends und Perspektiven (pp. 15-38) (Schriftenreihe Didaktik der Mathematik, Bd. 23). Holder-Pichler-Tempsky.
  5. Blum, W. (2006). Modellierungsaufgaben im Mathematikunterricht-Herausforderung fur Schuler und Lehrer [Modeling tasks in mathematics education-Challenge for students and teachers]. In A. Buchter & H. Humenberger (Eds.), Realitatsnaher Mathematikunterricht - Vom Fach aus und fur die Praxis (Festschrift fur Hans-Wolfgang Henn zum 60. Geburtstag) (pp. 8-23). Franzbecker.
  6. Blum, W., & Leiss, D. (2005). Modellieren im Unterricht mit der „Tanken‟-Aufgabe [Modeling in class with the "refuelling"-task]. Mathematik lehren, 128, 18-21.
  7. Bolt, B. (1983). Tennis, golf, and loose gravel: Insight from easy mathematical models. The UMAP Journal, 4(1), 5-18.
  8. Boston, M. D., & Smith, M. S. (2009). Transforming secondary mathematics teaching: Increasing the cognitive demands of instructional tasks used in teachers' classrooms. Journal for Research in Mathematics Education, 40(2), 119-156.
  9. Brancazio, P. J. (1985). Sport science: Physical laws and optimum performance. Touchstone.
  10. Bromme, R. (1981). Das Denken von Lehrern bei der Unterrichtsvorbereitung: Eine empirische Untersuchung zu kognitiven Prozessen von Mathematiklehrern [Teachers' thinking in lesson preparation: an empirical investigation of mathematics teachers' cognitive processes]. Beltz.
  11. Chapman, O. (2013). Mathematical-task knowledge for teaching. Journal of Mathematics Teacher Education, 16(1), 1-6. https://doi.org/10.1007/s10857-013-9234-7
  12. Cross, R. (2004). Ball trajectories: Factors influencing the flight of the ball. In H. Brody, R. Cross & L. Crawford (Eds.), The physics and technology of tennis (pp. 367-374). Racquet Tech Publishing.
  13. Cross, R., & Lindsey, C. (2013, December 22). Tennis ball trajectories: Aerodynamic drag and lift in tennis shots. https://twu.tennis-warehouse.com/learning_center/aerodynamics2.php
  14. Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23(2), 167-180. https://doi.org/10.1207/s15326985ep2302_6
  15. Goodwill, S. R., Chin, S. B., & Haake, S. J. (2004). Aerodynamics of spinning and non-spinning tennis balls. Journal of Wind Engineering and Industrial Aerodynamics, 92, 935-958. https://doi.org/10.1016/j.jweia.2004.05.004
  16. Graening, J. (1982). The geometry of tennis. The Mathematics Teacher, 75(8), 658-663. https://doi.org/10.5951/MT.75.8.0658
  17. Greefrath, G. (2018). Anwendungen und Modellieren im Mathematikunterricht: Didaktische Perspektiven zum Sachrechnen in der Sekundarstufe [Applications and modeling in mathematics teaching: Didactic perspectives on practical calculations in secondary education]. Springer. https://doi.org/10.1007/978-3-662-57680-9
  18. Helmke, A. (2010). Unterrichtsqualitat und Lehrerprofessionalitat: Diagnose, Evaluation und Verbesserung des Unterrichts [Teaching quality and teacher professionalism: Diagnostics, evaluation, and improvement of teaching]. Klett-Kallmeyer.
  19. Hiebert, J., Morris, A. K., & Glass, B. (2003). Learning to learn to teach: An "experiment" model for teaching and teacher preparation in mathematics. Journal of Mathematics Teacher Education, 6, 201-222. https://doi.org/10.1023/A:1025162108648
  20. International Tennis Federation (ITF). (2019). ITF rules of tennis 2020. https://www.itftennis.com/media/2510/2020-rules-of-tennis-english.pdf
  21. Leuders, T. (2003). Kreativitatsfordernder Mathematikunterricht [Creativity-enhancing mathematics teaching]. In T. Leuders (Ed.), Mathematikdidaktik. Ein Praxishandbuch fur die Sekundarstufe I & II (pp. 135-147). Cornelsen Scriptor.
  22. Leuders, T., & Prediger, S. (2016). Flexibel differenzieren und fokussiert fordern im Mathematikunterricht [Flexible differentiation and focused support in mathematics teaching]. Cornelsen Scriptor.
  23. Maass, K. (2003). Vorstellungen von Schulerinnen und Schulern zur Mathematik und ihre Veranderung durch Modellierung [Students' conceptions of mathematics and their change through modeling]. Der Mathematikunterricht, 49(3), 30-53.
  24. Maass, K. (2004). Mathematisches Modellieren im Unterricht: Ergebnisse einer empirischen Studie [Mathematical modeling in the classroom: Results of an empirical study]. Franzbecker.
  25. Muller, G., & Wittmann, E. Ch. (1998). Das Zahlenbuch: Lehrerband [The numbers book: Teacher's volume]. Klett.
  26. Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge. https://doi.org/10.4324/9781315189314
  27. Prediger, S., Barzel, B., Hussmann, S., & Leuders, T. (2021). Towards a research base for textbooks as teacher support: The case of engaging students in active knowledge organization in the KOSIMA project. ZDM Mathematics Education, 53, 1233-1248. https://doi.org/10.1007/s11858-021-01245-2
  28. Prediger, S., & Scherres, C. (2012). Niveauangemessenheit von Arbeitsprozessen in selbstdifferenzierenden Lernumgebungen: Qualitative Fallstudie am Beispiel der Suche aller Wurfelnetze [Level appropriateness of work processes in self-differentiating learning environments: Qualitative case study using the example of searching all cube nets]. Journal fur Mathematik-Didaktik, 33, 143-173. https://doi.org/10.1007/s13138-012-0035-9
  29. Robinson, G., & Robinson, I. (2013). The motion of an arbitrarily rotating spherical projectile and its application to ball games. Physica Scripta, 88, Article 018101. https://doi.org/10.1088/0031-8949/88/01/018101
  30. Robinson, G., & Robinson, I. (2018). Model trajectories for a spinning tennis ball: I. The service stroke. Physica Scripta, 93, Article 123002. https://doi.org/10.1088/1402-4896/aae733
  31. Snow, R. (1989). Aptitude-treatment interaction as a framework for research on individual differences in learning. In P. Ackerman, R. J. Sternberg & R. Glaser (Eds.), Learning and individual differences: Advances in theory and research (pp. 13-59). W. H. Freeman.
  32. Sullivan, P. (1999). Seeking a rationale for particular classroom tasks and activities. In J. M. Truran & K. N. Truran (Eds.), Making the difference (Proceedings of the 21st annual conference of the Mathematics Educational Research Group of Australasia, pp. 15-29). MERGA.
  33. Sullivan, P., Mousley, J., & Jorgensen, R. (2009). Tasks and pedagogies that facilitate mathematical problem solving. In B. Kaur, Y. B. Har & M. Kapur (Eds.), Mathematical problem solving: Yearbook 2009 (pp. 17-42). World Scientific Publishing. https://doi.org/10.1142/9789814277228_0002