DOI QR코드

DOI QR Code

Analysis of Row Hammer Based on Interfacial Trap of BCAT Structure in DRAM

계면 트랩에 기반한 BCAT 구조 DRAM의 로우 해머 분석

  • Chang Young Lim (Dept. of Electronic Engineering, Gangneung-Wonju National University) ;
  • Yeon Seok Kim (Dept. of Electronic Engineering, Gangneung-Wonju National University) ;
  • Min-Woo Kwon (Dept. of Electronic Engineering, Gangneung-Wonju National University)
  • Received : 2023.07.07
  • Accepted : 2023.09.15
  • Published : 2023.09.30

Abstract

Row hammering is a phenomenon in which bit flips occur in adjacent rows when accessing a particular row continuously, causing data damage, security problems, and poor computing performance. This paper analyzes the cause and response method of row hammering through TCAD simulation in 2ynm DRAM. In the experiment, the row hammering is reproduced while changing the parameters of the trap and the device structure, and the trap density, temperature. It analyzes the relationship with Active Wisdom, etc. As a result, it was confirmed that changes in trap parameters and device structures directly affect ΔVcap/pulse. This enables a fundamental understanding of low hammering and finding countermeasures, and can contribute to improving the stability and security of DRAM.

로우 해머는 특정 행(row)에 연속적으로 액세스할 때 인접한 행에서 비트 플립이 발생하는 현상으로 데이터 손상과 보안 문제, 컴퓨팅 성능 저하를 야기한다. 본 논문은 2ynm DRAM에서 TCAD 시뮬레이션을 통해 로우 해머의 원인과 대응 방법을 분석한다. 실험에서는 트랩의 파라미터와 소자의 구조를 변화시키면서 로우 해머 현상을 재현하고, 트랩 밀도, 온도. 액티브 위스 등과의 관계를 분석한다. 실험 결과, 트랩 파라미터와 소자 구조의 변화는 ΔVcap/pulse에 직접적인 영향을 미치는 것을 확인하였다. 이를 통해 로우 해머에 대한 근본적인 이해와 대응 방안 모색이 가능하고 DRAM의 안정성과 보안을 향상시키는데 기여할 수 있다.

Keywords

Acknowledgement

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (MOE)(2022RIS-005), and was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2022M3I7A1078936) and this paper was supported by research funds for newly appointed professors of Gangneung-Wonju National University in 2021.

References

  1. S. K. Gautam, S. K. Manhas, A. Kumar, M. Pakala and E. Yieh, "Row Hammering Mitigation Using Metal Nanowire in Saddle Fin DRAM," in IEEE Transactions on Electron Devices, vol.66, no.10, pp.4170-4175, 2019. DOI: 10.1109/TED.2019.2931347.S.
  2. L. Cojocar, K. Razavi, C. Giuffrida and H. Bos, "Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks," 2019 IEEE Symposium on Security and Privacy (SP), pp.55-71,2019. DOI: 10.1109/SP.2019.00089.
  3. You, Jung Min, and Joon-Sung Yang. "MRLoc: Mitigating Row-hammering based on memory Locality," Proceedings of the 56th Annual Design Automation Conference 2019. 2019. DOI: 10.1145/3316781.3317866
  4. J. S. Kim et al., "Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques," 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp.638-651, 2020. DOI: 10.1109/ISCA45697.2020.00059.
  5. O. Mutlu, "The RowHammer problem and other issues we may face as memory becomes denser," Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.1116-1121, 2017. DOI: 10.23919/DATE.2017.792715
  6. O. Mutlu and J. S. Kim, "RowHammer: A Retrospective," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.39, no.8, pp.1555-1571, 2020. DOI: 10.1109/TCAD.2019.2915318.
  7. T. Yang and X. -W. Lin, "Trap-Assisted DRAM Row Hammer Effect," in IEEE Electron Device Letters, vol.40, no.3, pp.391-394, 2019. DOI: 10.1109/LED.2019.2891260.
  8. H. Jun et al., "HBM (High Bandwidth Memory) DRAM Technology and Architecture," 2017 IEEE International Memory Workshop (IMW), pp.1-4, 2017. DOI: 10.1109/IMW.2017.7939084.