Acknowledgement
The authors want to express their gratitude to the referee for the helpful comments and suggestions.
References
- S. Ball, Table of bounds on three dimensional linear codes or (n, r)-arcs in PG(2, q), available at https://web.mat.upc.edu/people/simeon.michael.ball/codebounds.html
- B. I. Belov, V. N. Logachev, and V. P. Sandimirov, Construction of a class of linear binary codes that attain the Varsamov-Griesmer bound, Problemy Peredaci Informacii 10 (1974), no. 3, 36-44.
- J. Bierbrauer, Introduction to Coding Theory, Chapman & Hall, Dordrecht, 2005.
- N. Bono, M. Fujii, and T. Maruta, On optimal linear codes of dimension 4, J. Algebra Comb. Discrete Struct. Appl. 8 (2021), no. 2, 73-90. https://doi.org/10.13069/jacodesmath.935947
- I. G. Bouyukliev, Y. Kageyama, and T. Maruta, On the minimum length of linear codes over ?5, Discrete Math. 338 (2015), no. 6, 938-953. https://doi.org/10.1016/j.disc.2015.01.010
- A. E. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997), no. 3, 261-266. https://doi.org/10.1023/A:1008294128110
- E. J. Cheon, On the upper bound of the minimum length of 5-dimensional linear codes, Australas. J. Combin. 37 (2007), 225-232.
- B. Csajbok and T. Heger, Double blocking sets of size 3q - 1 in PG(2, q), European J. Combin. 78 (2019), 73-89. https://doi.org/10.1016/j.ejc.2019.01.004
- S. M. Dodunekov, Optimal linear codes, Doctor Thesis, Sofia, 1985.
- M. Grassl, Tables of linear codes and quantum codes, (electronic table, online), http://www.codetables.de/.
- J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960), 532-542. https://doi.org/10.1147/rd.45.0532
- R. Hill, Optimal linear codes, in Cryptography and coding, II (Cirencester, 1989), 75-104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992.
- R. Hill and E. Kolev, A survey of recent results on optimal linear codes, in Combinatorial designs and their applications (Milton Keynes, 1997), 127-152, Chapman & Hall/CRC Res. Notes Math., 403, Chapman & Hall/CRC, Boca Raton, FL, 1999.
- J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985.
- W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511807077
- Y. Inoue and T. Maruta, Construction of new Griesmer codes of dimension 5, Finite Fields Appl. 55 (2019), 231-237. https://doi.org/10.1016/j.ffa.2018.10.007
- Y. Kageyama and T. Maruta, On the geometric constructions of optimal linear codes, Des. Codes Cryptogr. 81 (2016), no. 3, 469-480. https://doi.org/10.1007/s10623-015-0167-2
- K. Kumegawa and T. Maruta, Nonexistence of some Griesmer codes over Fq, Discrete Math. 339 (2016), no. 2, 515-521. https://doi.org/10.1016/j.disc.2015.09.030
- K. Kumegawa and T. Maruta, Non-existence of some 4-dimensional Griesmer codes over finite fields, J. Algebra Comb. Discrete Struct. Appl. 5 (2018), no. 2, 101-116. https://doi.org/10.13069/jacodesmath.427968
- K. Kumegawa, T. Okazaki, and T. Maruta, On the minimum length of linear codes over the field of 9 elements, Electron. J. Combin. 24 (2017), no. 1, Paper No. 1.50, 27 pp. https://doi.org/10.37236/6394
- I. N. Landjev and T. Maruta, On the minimum length of quaternary linear codes of dimension five, Discrete Math. 202 (1999), no. 1-3, 145-161. https://doi.org/10.1016/S0012-365X(98)00354-9
- T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209 (1999), 427-435. https://doi.org/10.1016/S0012-365X(99)00088-6
- T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001), 165-177. https://doi.org/10.1023/A:1008317022638
- T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Comput. 7 (2013), no. 1, 73-80. https://doi.org/10.55630/sjc.2013.7.73-80
- T. Maruta, Griesmer bound for linear codes over finite fields, available at http://mars39.lomo.jp/opu/griesmer.htm.
- T. Maruta and Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun. 5 (2011), no. 3, 505-520. https://doi.org/10.3934/amc.2011.5.505
- T. Maruta, M. Shinohara, and M. Takenaka, Constructing linear codes from some orbits of projectivities, Discrete Math. 308 (2008), no. 5-6, 832-841. https://doi.org/10.1016/j.disc.2007.07.045
- M. Takenaka, K. Okamoto, and T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308 (2008), no. 5-6, 842-854. https://doi.org/10.1016/j.disc.2007.07.044
- H. N. Ward, Divisibility of codes meeting the Griesmer bound, J. Combin. Theory Ser. A 83 (1998), no. 1, 79-93. https://doi.org/10.1006/jcta.1997.2864