References
- R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, in Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), 18-67, Lecture Notes in Math., 798, Springer, Berlin, 1980.
- K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235. https://doi.org/10.1080/1065246031000081652
- K. S. Chang, G. W. Johnson, and D. L. Skoug, Functions in the Banach algebra S(ν), J. Korean Math. Soc. 24 (1987), no. 2, 151-158.
- D. H. Cho, Conditional integral transforms and conditional convolution products on a function space, Integral Transforms Spec. Funct. 23 (2012), no. 6, 405-420. https://doi.org/10.1080/10652469.2011.596482
- J. G. Choi, D. Skoug, and S. J. Chang, The behavior of conditional Wiener integrals on product Wiener space, Math. Nachr. 286 (2013), no. 11-12, 1114-1128. https://doi.org/10.1002/mana.201200221
- D. M. Chung, Scale-invariant measurability in abstract Wiener spaces, Pacific J. Math. 130 (1987), no. 1, 27-40. http://projecteuclid.org/euclid.pjm/1102690291 102690291
- H. S. Chung, J. G. Choi, and S. J. Chang, Conditional integral transforms with related topics on function space, Filomat 26 (2012), no. 6, 1151-1162. https://doi.org/10.2298/FIL1206151C
- H. S. Chung, I. Y. Lee, and S. J. Chang, Conditional transform with respect to the Gaussian process involving the conditional convolution product and the first variation, Bull. Korean Math. Soc. 51 (2014), no. 6, 1561-1577. https://doi.org/10.4134/BKMS.2014.51.6.1561
- G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), no. 1, 157-176. http://projecteuclid.org/euclid.pjm/1102784666 102784666
- I. Y. Lee, H. S. Chung, and S. J. Chang, Integration formulas for the conditional transform involving the first variation, Bull. Iranian Math. Soc. 41 (2015), no. 3, 771-783.
- R. E. A. C. Paley, N. Wiener, and A. Zygmund, Notes on random functions, Math. Z. 37 (1933), no. 1, 647-668. https://doi.org/10.1007/BF01474606
- C. Park and D. Skoug, A note on Paley-Wiener-Zygmund stochastic integrals, Proc. Amer. Math. Soc. 103 (1988), no. 2, 591-601. https://doi.org/10.2307/2047184
- C. Park and D. Skoug, Conditional Wiener integrals. II, Pacific J. Math. 167 (1995), no. 2, 293-312. http://projecteuclid.org/euclid.pjm/1102620868 102620868
- C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.
- H. G. Tucker, A graduate course in probability, Probability and Mathematical Statistics, Vol. 2, Academic Press, Inc., New York, 1967.
- J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975), no. 2, 623-638. http://projecteuclid.org/euclid.pjm/1102905371 102905371