DOI QR코드

DOI QR Code

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION

  • Jae Gil Choi (School of General Education Dankook University) ;
  • Sang Kil Shim (Department of Mathematics Dankook University)
  • Received : 2022.09.01
  • Accepted : 2022.12.30
  • Published : 2023.09.30

Abstract

In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

Keywords

References

  1. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, in Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), 18-67, Lecture Notes in Math., 798, Springer, Berlin, 1980.
  2. K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235. https://doi.org/10.1080/1065246031000081652
  3. K. S. Chang, G. W. Johnson, and D. L. Skoug, Functions in the Banach algebra S(ν), J. Korean Math. Soc. 24 (1987), no. 2, 151-158.
  4. D. H. Cho, Conditional integral transforms and conditional convolution products on a function space, Integral Transforms Spec. Funct. 23 (2012), no. 6, 405-420. https://doi.org/10.1080/10652469.2011.596482
  5. J. G. Choi, D. Skoug, and S. J. Chang, The behavior of conditional Wiener integrals on product Wiener space, Math. Nachr. 286 (2013), no. 11-12, 1114-1128. https://doi.org/10.1002/mana.201200221
  6. D. M. Chung, Scale-invariant measurability in abstract Wiener spaces, Pacific J. Math. 130 (1987), no. 1, 27-40. http://projecteuclid.org/euclid.pjm/1102690291 102690291
  7. H. S. Chung, J. G. Choi, and S. J. Chang, Conditional integral transforms with related topics on function space, Filomat 26 (2012), no. 6, 1151-1162. https://doi.org/10.2298/FIL1206151C
  8. H. S. Chung, I. Y. Lee, and S. J. Chang, Conditional transform with respect to the Gaussian process involving the conditional convolution product and the first variation, Bull. Korean Math. Soc. 51 (2014), no. 6, 1561-1577. https://doi.org/10.4134/BKMS.2014.51.6.1561
  9. G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), no. 1, 157-176. http://projecteuclid.org/euclid.pjm/1102784666 102784666
  10. I. Y. Lee, H. S. Chung, and S. J. Chang, Integration formulas for the conditional transform involving the first variation, Bull. Iranian Math. Soc. 41 (2015), no. 3, 771-783.
  11. R. E. A. C. Paley, N. Wiener, and A. Zygmund, Notes on random functions, Math. Z. 37 (1933), no. 1, 647-668. https://doi.org/10.1007/BF01474606
  12. C. Park and D. Skoug, A note on Paley-Wiener-Zygmund stochastic integrals, Proc. Amer. Math. Soc. 103 (1988), no. 2, 591-601. https://doi.org/10.2307/2047184
  13. C. Park and D. Skoug, Conditional Wiener integrals. II, Pacific J. Math. 167 (1995), no. 2, 293-312. http://projecteuclid.org/euclid.pjm/1102620868 102620868
  14. C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.
  15. H. G. Tucker, A graduate course in probability, Probability and Mathematical Statistics, Vol. 2, Academic Press, Inc., New York, 1967.
  16. J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975), no. 2, 623-638. http://projecteuclid.org/euclid.pjm/1102905371 102905371