DOI QR코드

DOI QR Code

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties

은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구

  • In-Jun Hwang (Department of Chemical Engineering, Kangwon National University) ;
  • Jae-Rak Jeon (Department of Chemical Engineering, Kangwon National University) ;
  • Jinsoo Kim (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Seung-Soo Kim (Department of Chemical Engineering, Kangwon National University)
  • 황인준 (강원대학교 삼척캠퍼스 에너지화학공학과) ;
  • 전재락 (강원대학교 삼척캠퍼스 에너지화학공학과) ;
  • 김진수 (경희대학교 화학공학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 에너지화학공학과)
  • Received : 2023.07.26
  • Accepted : 2023.08.24
  • Published : 2023.09.30

Abstract

Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

은행잎은 자체에 존재하는 ginkgolide A, B, C, J 및 bilobalide의 강한 살충작용으로 인해 제대로 분해가 진행되지 않아 그대로 방치할 시 사고를 유발 할 수 있는 폐기물 바이오매스이다. 은행잎 바이오매스는 적절한 기술 적용을 통해 연료나 화학물질로 전환할 수 있다. 본 연구에서는 은행잎의 급속 열분해 반응과정에서 열분해 온도, 최소 유동화 속도, 샘플의 크기를 변화 시키면서 생성물 특성에 대한 연구를 수행하였다. 열분해 온도 400~550℃, 최소 유동화 속도 2.0~4.0 Umf, 그리고 바이오매스 샘플의 크기에 변화 따라 생성물의 수율과 특성의 변화를 확인하였다. 급속 열분해는 기포 유동층 반응기에서 모래를 층 물질로 사용하여 400~500℃ 구간에서 진행하였다. 열분해 후 액상 생성물의 수율은 온도에 따라 33.66~40.01 wt%였으며, 기상 생성물 중 CO2와 CO의 선택성이 높았고, 온도 증가에 따라 CO2의 선택성은 낮아지고 CO의 선택성은 높아졌다. 반응 온도 450℃, 유동화 속도 3.0×Umf, 0.43~0.71 mm 입자 크기에서 급속 열분해를 진행한 결과 40.01 wt%의 바이오-오일 수율을 얻었으며, 30.17 MJ/kg의 고위발열량을 나타냈다. 생성된 바이오-오일을 GC-MS를 통해 분석해본 결과 다양한 페놀 화합물 및 벤젠 유도체가 생성된 것을 확인하였다. 본 연구에서 은행잎 폐기물 바이오매스의 처리와 함께 활용 가능성을 급속 열분해를 통해 확인하였다.

Keywords

Acknowledgement

본 연구는 연구재단(RS-2023-00208645)의 지원으로 연구하였으며 이에 감사드립니다.

References

  1. Intergovernmental Panel on Climate Change (IPCC), "Summary for Policymakers. In Global Warming of 1.5℃: IPCC Special Report on Impacts of Global Warming of 1.5℃ above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty," 1-24 (2022). 
  2. Intergovernmental Panel on Climate Change (IPCC), "Framing, Context, and Methods. In Climate Change 2021 - The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change," 147-286 (2023). 
  3. Gross, R., Leach, M., and Bauen, A., "Progress in renewable energy," Environ. Int., 29, 105-122 (2003). 
  4. Bridgwater, T., "Biomass for energy," Sci. Food Agric., 86, 1755-1768 (2006) 
  5. Jacobs, B. P. and Browner, W. S., "Ginkgo biloba: A living fossil," Am. J. Med., 108, 341-342 (2000). 
  6. Singh, B., Kaur, P., Gopichand, Singh, R. D., and Ahuja, P. S., "Biology and chemistry of Ginkgo biloba," Fitoterapia., 79, 401-418 (2008). 
  7. Dmuchowski, W., Bragoszewska, P., Gozdowski, D., Baczewska-Dabrowska, A. B., Chojnacki, T., Jozwiak, A., Swiezewska, E., Gworek, B., and Suwara, I., "Strategy of Ginkgo biloba L. in the mitigation of salt stress in the urban environment," Urban For. Urban Green., 38, 223-231 (2019). 
  8. Han, S. B. and Kim, J. H., "Research Trend of Biopesticides from Ginkgo biloba(L.) Leaves and External Seed Coat," Korean J. Pestic. Sci., 18, 210-219 (2014). 
  9. Seo, D., Park, C., Oh, S., and Won, D., "Resurrection of Fallen Leaves' Threatens Safety," Safetimes, http://www.safetimes.co.kr/news/articleView.html?idxno=103990 (accessed Sep. 2023) 
  10. Ly, H. V., Kim, J., Kim, S. S., Woo, H. C., and Choi, S. S., "Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor," Clean Technol., 26(1), 79-87 (2020). 
  11. Ha, J. M., "Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review," Clean Technol., 28(2), 174-181 (2022). 
  12. Liu, Y., Lee, D. J., Lee, Y. K., Paghavan, P., Yang, R., and Ramawati, F., "Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries," Clean Technol., 28(2), 97-102 (2022). 
  13. Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G., and Jensen, A. D., "A review of catalytic upgrading of bio-oil to engine fuels," Appl. Catal. A Gen., 407, 1-19 (2011). 
  14. Kim, S.-S. and Agblevor, F. A., "Thermogravimetric analysis and fast pyrolysis of Milkweed," Bioresour. Technol., 169, 367-373 (2014). 
  15. Dominguez, A., Fernandez, Y., Fidalgo, B., Pis, J. J., and Menendez, J. A., "Biogas to syngas by microwave-assisted dry reforming in the presence of char," Energy & Fuels, 21, 2066-2071 (2007). 
  16. Marquevich, M., Czernik, S., Chornet, E., and Montane, D., "Hydrogen from biomass: steam reforming of model compounds of fast-pyrolysis oil," Energy & Fuels, 13, 1160-1166 (1999). 
  17. Lavoie, J. M., "Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation," Front. Chem., 2, 81 (2014). 
  18. Saito, H. and Sekine, Y., "Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization," RSC Adv., 10, 21427-21453 (2020). 
  19. Jiang, X., Sharma, L., Fung, V., Park, S. J., Jones, C. W., Sumpter, B. G., Baltrusaitis, J., and Wu, Z., "Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis," ACS Catal., 11, 2182-2234 (2021). 
  20. Zhang, Y., Qi, L., Leonhardt, B., and Bell, A. T., "Mechanism and Kinetics of n-Butane Dehydrogenation to 1, 3-Butadiene Catalyzed by Isolated Pt Sites Grafted onto≡ SiOZn-OH Nests in Dealuminated Zeolite Beta," ACS Catal., 12, 3333-3345 (2022). 
  21. Aguilar, G., Muley, P. D., Henkel, C., and Boldor, D., "Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L.) and energy cane (Saccharum complex) in an inductively heated reactor," Aims Energy, 3(4), 838-850 (2015).  https://doi.org/10.3934/energy.2015.4.838
  22. Shen, J., Wang, X. S., Garcia-Perez, M., Mourant, D., Rhodes, M. J., and Li, C. Z., "Effects of particle size on the fast pyrolysis of oil mallee woody biomass," Fuel, 88, 1810-1817 (2009). 
  23. Pattiya, A. and Suttibak, S., "Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit," J. Anal. Appl. Pyrolysis, 95, 227-235 (2012).  https://doi.org/10.1016/j.jaap.2012.02.010
  24. Singh Chouhan, A. P. and Sarma, A. K., "Critical analysis of process parameters for bio-oil production via pyrolysis of biomass: a review," Recent Patents Eng., 7, 98-114 (2013). 
  25. Ly, H. V., Kim, S.-S., Woo, H. C., Choi, J. H., Suh, D. J., and Kim, J., "Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production," Energy, 93, 1436-1446 (2015). 
  26. Kim, J. S., "Characteristics and Trend of the Biomass Pyrolysis Technology-Focusing on the Lignocellulosc Biomass," Prospect. Ind. Chem., 15(6), 2-13(2012). 
  27. Ly, H. V., Park, J. W., Kim, S.-S., Hwang, H. T., Kim, J., and Woo, H. C., "Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil," Renew. Energy, 149, 1434-1445 (2020). 
  28. Yin, J., Chen, X., and Wang, D., "Purification of creosol applying green heterogeneous extraction technology," J. Chem. Technol. Biotechnol., 97, 2945-2951 (2022). 
  29. Song, G., Wu, F., Peng, Y., Jiang, X., and Wang, Q., "High-Level Production of Catechol from Glucose by Engineered Escherichia coli," Fermentation., 8, 344 (2022). 
  30. Qu, Y. C., Wang, Z., Lu, Q., and Zhang, Y., "Selective production of 4-vinylphenol by fast pyrolysis of herbaceous biomass," Ind. Eng. Chem. Res., 52, 12771-12776 (2013). 
  31. Saidi, M., Samimi, F., Karimipourfard, D., Nimmanwudipong, T., Gates, B. C., and Rahimpour, M. R., "Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation," Energy Environ. Sci., 7, 103-129 (2014). 
  32. Franck, H. G. and Stadelhofer, J. W., "Production and uses of benzene derivatives," Ind. Aromat. Chem., Springer, 132-235 (1988). 
  33. Shu, R., Li, R., Lin, B., Wang, C., Cheng, Z., and Chen, Y., "A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels," Biomass and Bioenergy, 132, 105432 (2020). 
  34. Choi, J. H., Kim, S.-S., Ly, H. V., Kim, J., and Woo, H. C., "Effects of water-washing Saccharina japonica on fast pyrolysis in a bubbling fluidized-bed reactor," Biomass and Bioenergy, 98, 112-123 (2017).