DOI QR코드

DOI QR Code

Adsorption Characteristics of Hydrogen in Regular Single-Walled Carbon Nanotube Arrays at Low Temperature

저온에서 규칙적인 단일벽 탄소나노튜브 배열의 수소 흡착 특성

  • Yang Gon Seo (Department of Chemical Engineering/RIGET, Gyeongsang National University)
  • 서양곤 (경상대학교 화학공학과/그린에너지융합연구소)
  • Received : 2023.08.02
  • Accepted : 2023.08.22
  • Published : 2023.09.30

Abstract

The amount of hydrogen adsorbed in arrays of single walled carbon nanotubes (SWNTs) was studied as a function of nanotube diameter and distance between the nearest-neighbor nanotubes on square arrangements using a grand canonical Monte Carlo simulation. The influence of the geometry of a triangle array with the same diameters and distances was also studied. Hydrogen-carbon and hydrogen-hydrogen interactions were modeled with Lennard-Jones potentials for short range interactions and electrostatic interactions were added for hydrogen-hydrogen pairs to consider quantum contributions at low temperatures. At 194.5 K, Type I isotherms for large-diameter SWNTs and Type IV isotherms without hysteresis between adsorption and desorption processes for wider tube separations were observed. At 200 bars, the gravimetric hydrogen storage capacity of the SWNTs was reached or exceeded the US Department of Energy (DOE) target, but the volumetric capacity was about 70% of the DOE target. At 77 K, a two-step adsorption was observed, corresponding to a monolayer formation step followed by a condensation step. Hydrogen was adsorbed first to the inner surface of the nanotubes, then to the outer surface, intratubular space and the interstitial channels between the nanotube bundles. The simulation indicated that SWNTs of various diameters and distances in a wide range of configurations exceeded the DOE gravimetric and volumetric targets at under 1 bar.

본 연구에서는 grand canonical 몬테카를로 전산모사 방법을 이용하여 정사각형 배열을 가지는 단일벽나노튜브에서 나노튜브의 직경과 가장 가까운 튜브들 사이의 거리의 함수로써 수소의 흡착특성을 연구하였다. 그리고 동일한 직경과 간격을 가지는 삼각형 배열을 이용하여 기하학에 대한 영향도 연구하였다. 수소-탄소 그리고 수소-수소의 인력은 단거리 인력의 경우 Lennard-Jones 포텐셜을 사용하였고, 수소-수소의 경우는 정전기적 인력을 저온에서의 양자효과를 고려하기 위해 추가하였다. 194.5 K에서 큰 직경을 가지는 단일벽나노튜브의 경우 Type I과 넓은 간격을 가지는 나노튜브의 경우 흡착과 탈착과정에서 Type IV의 흡착 등온선이 관찰되었다. 200 bar에서 단일벽나노튜브의 중량 수소저장 능력은 미국 에너지부의 목표치에 도달하거나 초과하였다. 그러나 부피 수소저장 능력은 목표치의 약 70%에 해당하였다. 77 K에서는 단일층 형성과 이후 응축 단계가 따르는 두 단계의 흡착이 관찰되었다. 수소는 나노튜브의 내부 표면, 외부 표면, 관 내부의 공간 그리고 나노튜브 다발 사이의 틈새 채널의 순서로 흡착하였다. 1 bar 이하에서도 여러 가지 직경과 간격을 가지는 탄소나노튜브는 중량 그리고 부피 저장 능력이 모두 목표치를 초과하였다.

Keywords

References

  1. Niaz, S., Manzoor, T., and Pandith, A. H., "Hydrogen Storage: Materials, Methods and Perspectives," Renew. Sustain. Energy Rev., 50, 457-469 (2015). 
  2. van den Berg, A. W. C. and Arean, C. O., "Materials for hydrogen Storage: Current Research Trends and Perspectives," Chem. Comm., 668-681 (2008). 
  3. Lee, S. K., Han, J. Y., Kim, C. H., Lim, H., and Jung, H. Y., "Technical Trends of Hydrogen Production," Clean Technol., 23(2), 121-132 (2017). 
  4. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed July 2023). 
  5. Wang, L. and Yang, R. T., "New Sorbents for Hydrogen by Hydrogen Spillover - A Review," Energy Environ. Sci., 1, 268-279 (2008). 
  6. Durbin, D. J. and Malardier-Jugroot, C., "Review of Hydrogen Storage Techniques for an on Board Vehicle Applications," Int. J. Hydrogen Energy, 38(34), 14595-14617 (2013).  https://doi.org/10.1016/j.ijhydene.2013.07.058
  7. Shin, H. W., Hwang, J. H., Kim, E. A., and Hong, T. W., "Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites," Clean Technol., 27(2), 107-114 (2021). 
  8. Zuttel, A., "Hydrogen Storage Methods," Sci. Nature, 91(4), 157-172 (2004).  https://doi.org/10.1007/s00114-004-0516-x
  9. Ramires-Vidal, P., Sdanghi, G., Celzard, A., and Fierro, V., "High Hydrogen Release by Cryo-adsorption and Compression on Porous Materials," Int. J. Hydrogen Energy, 47, 8892-8915 (2022). 
  10. Moellmer, J., Moeller, A., Dreisbach, F., Glaeser, R., and Staudt, R., "High Pressure Adsorption of Hydrogen, Nitrogen, Carbon Dioxide and Methane on the Metal Organic Framework HKUST-1," Microporous Mesoporous Mater., 138, 140-148 (2011). 
  11. Roszak, R., Firlej, L., Roszak, S., Pfeifer, P., and Kuchta, B., "Hydrogen Storage by Adsorption in Porous Materials: Is it Possible?," Colloids Sur. A: Physicochem. Eng. Aspects, 496, 69-76 (2016).  https://doi.org/10.1016/j.colsurfa.2015.10.046
  12. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., "C60: Buckminsterfullerene," Nature, 318, 162-163 (1985). 
  13. Iijima, S., "Helical Microtubules of Graphitic Carbon," Nature, 354, 56-58 (1991). 
  14. Sloan, J., Hammer, J., Zwiefka-Sibley, M., Green, M. L. H., and Sloan, J., "The Opening and Filling of Single Walled Carbon Nanotubes (SWNTs)," Chem. Commun., 3, 347-348 (1998). 
  15. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J., "Storage of Hydrogen in Single-Walled Carbon Nanotubes," Nature, 386, 377-379 (1997). 
  16. Darkrim, F. D., Aoufi, A., and Levesque, D., "Quantum Contribution to Gas Adsorption in Carbon Nanotubes," Mol. Simul., 24(1-3), 51-61 (2000).  https://doi.org/10.1080/08927020008024186
  17. Yang, Q. and Zhong, C., "Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in Metal-Organic Frameworks," J. Phys. Chem., B, 110, 17776-17783 (2006). 
  18. Steele, W. A., "The Physical Interaction of Gases with Crystalline Solids," Surf. Sci., 36, 317-352 (1973). 
  19. Seo, Y. G., "Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores," Clean Technol., 24(4), 348-356 (2018). 
  20. June, R. L., Bell, A. T., and Theodoru, D. N., "Prediction of Low Occupancy Sorption of Alkanes," J. Phys. Chem., 94(4), 1508-1516 (1990).  https://doi.org/10.1021/j100367a056
  21. Fennell, C. J. and Gezelter, J. D., "Is the Ewald Summation Still Necessary? Pairwise Alternatives to the Accepted Standard for Long-Range Electrostatics," J. Chem. Phys., 124, 234104 (2006). 
  22. Keller, J. and Staudt, R., "Gas Adsorption Equilibria: Experimental Methods and Adsorption Isotherms," Springer, New York (2005). 
  23. Brandani, S., Mangano, E., and Sarkisov, L., "Net, Excess and Absolute Adsorption and Adsorption of Helium," Adsorption, 22, 261-276 (2016). 
  24. Seo, Y. G., "Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation," Clean Technol., 28(3), 249-257 (2022). 
  25. Lemmon, E. W., Huber, M. L., and Leachman, J. W., "Revised Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications," J. Res. Natl. Inst. Stand. Technol., 113, 341-350 (2008). 
  26. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Klang, C. H., Bethune, D. S., and Heben, M., "Storage of Hydrogen in Single-Walled Carbon Nanotubes," Nature, 386, 377-379 (1997). 
  27. Shen, H., Li, H., Yang, Z., and Li, C., "Magic of Hydrogen Spillover: Understanding and Application," Green Energ. Environ., 7, 1161-1198 (2022). 
  28. Yang, R. T., "Gas Separation by Adsorption Processes," Butterworths, Boston (1987). 
  29. Langmuir, I., "The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum," J. Am. Chem. Soc., 40(9), 1361-1403 (1918).  https://doi.org/10.1021/ja02242a004
  30. Sips, R., "On the Surface of a Catalyst Surface," J. Chem. Phys., 16, 490-495 (1948). 
  31. Kim, Y. D., Thu, K., and Ng, K. C., "Adsorption Characteristics of Water Vapor on Ferroaluminophosphate for Desalination Cycle," Desalination, 344, 350-356 (2014). 
  32. Miksik, F., Miyazaki, T., and Thu, K., "Adsorption Isotherm Modelling of Water on Nano-Tailored Mesoporous Silica Based on Distribution Function," Energies, 13, 4247 (2020). 
  33. Marquardt, D. W., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," Soc. Indus. Appi. Math., 11(2) 431-441 (1963).  https://doi.org/10.1137/0111030
  34. Wang, Q. and Johnson, J. K., "Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption," J. Phys. Chem. B, 103, 4809-4813 (1999). 
  35. Darkrim, F. and Levesque, D., "High Adsorptive Property of Opened Carbon Nanotubes at 77 K," J. Phys. Chem. B, 104, 6773-6776 (2000). 
  36. Yin, Y. F., Mays, T., and McEnaney, B., "Molecular Simulation of Hydrogen Storage in Carbon Nanotube Arrays," Langmuir, 16, 10521-10527 (2000).