DOI QR코드

DOI QR Code

다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries

  • 김영범 (충북대학교 신소재공학과) ;
  • 박기대 (충북대학교 신소재공학과)
  • Yeong Beom Kim (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Gi Dae Park (Department of Advanced Materials Engineering, Chungbuk National University)
  • 투고 : 2023.08.21
  • 심사 : 2023.08.29
  • 발행 : 2023.09.30

초록

전이금속 칼코젠화물은 소듐 이차전지의 음극재로서 높은 이론 용량을 가지나 충·방전 과정에서 큰 부피 팽창으로 인해 짧은 수명 특성을 보이며, 낮은 전기전도도로 인해 출력 특성을 저하시킨다는 문제가 있다. 이를 해결하기 위해, 본 연구에서는 분무열분해와 후 열처리 공정을 통해 다공성의 CNT ball과 (Ni,Co)Se2 나노결정이 복합된 구조체를 합성하였으며, 이를 소듐 이차전지의 음극에 적용시켜 전기화학적 특성을 평가하였다. 합성된 소재는 분무열분해 동안 Polystyrene(PS) 나노비드의 분해로 인해 다공성 구조를 형성하여 충방전 과정에서 발생하는 부피팽창을 효과적으로 수용하였으며, CNT 소재와의 복합화를 통해 전기화학적 성능을 향상시킬 수 있었다. 이로 인해 다공성 구조의 (Ni,Co)Se2-CNT 복합소재는 0.2 A g-1의 전류밀도에서 698 mA h g-1의 높은 초기 방전용량을 보였으며, 100 사이클 후 400 mA h g-1의 방전용량을 유지함을 보였다.

Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

키워드

과제정보

본 연구는 2020학년도 충북대학교 학술연구지원사업의 연구비 지원에 의하여 연구 되었습니다.

참고문헌

  1. Jin, Y.-H., Kim, B.-R., and Kim, D.-W., "Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water," Clean Technol., 27(1), 33-38 (2021). 
  2. Kim, J., Kim, Y., Oh, S. K., and Jeon, J. K.,"Analysis of Dry Process Products for Recycling of Spent Secondary Batteries," Clean Technol., 27(2), 139-145 (2021). 
  3. Pomerantseva, E., and Gogotsi, Y., "Two-dimensional Heterostructures for Energy Storage," Nat. Energy, 2(7), 1-6 (2017).  https://doi.org/10.1038/nenergy.2017.89
  4. Neumann, J., Petranikova, M., Meeus, M., Gamarra, J. D., Younesi, R., Winter, M., and Nowak, S., "Recycling of Lithium Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling," Adv. Energy Mater., 12(17), 2102917 (2022). 
  5. Yang, Y., Fu, W., Lee, D., Bell, C., Drexler, M., Ma, Z., Magasinski, A., Yushin, G., and Alamgir, F., "Porous FeP/C Composite Nanofibers as High-Performance Anodes for Li-Ion/Na-Ion Batteries," Mater. Today Energy, 16, 100410 (2020). 
  6. Tomboc, G. M., Wang, Y., Wang, H., Li, J., and Lee, K., "Sn-Based Metal Oxides and Sulfides Anode Materials for Na Ion Battery," Energy Storage Mater., 39, 21-44 (2021). 
  7. Liu, Q., Zhang, S.-J., Xiang, C.-C., Luo, C.-X., Zhang, P.-F., Shi, C.-G., Zhou, Y., Li, J.-T., Huang, L., and Sun, S.-G., "Cubic MnS-FeS2 Composites Derived from a Prussian Blue Analogue as Anode Materials for Sodium-Ion Batteries with Long-Term Cycle Stability," ACS Appl. Mater. Interfaces, 12(39), 43624-43633 (2020).  https://doi.org/10.1021/acsami.0c10874
  8. Anh, L. T., Rai, A. K., Thi, T. V., Gim, J., Kim, S., Mathew, V., and Kim, J., "Enhanced Electrochemical Performance of Novel K-Doped Co3O4 as the Anode Material for Secondary Lithium-Ion Batteries," J. Mater. Chem. A, 2(19), 6966-6975 (2014).  https://doi.org/10.1039/C4TA00532E
  9. Jeong, S. Y., Park, S.-K., Kang, Y. C., and Cho, J. S., "One-Dimensional Nanostructure Comprising MoSe2 Nanosheets and Carbon with Uniformly Defined Nanovoids as an Anode for High-Performance Sodium-Ion Batteries," Chem. Eng. J., 351, 559-568 (2018). 
  10. Jo, M. S., Lee, J. S., Jeong, S. Y., Kim, J. K., Kang, Y. C., Kang, D. W., Jeong, S. M., and Cho, J. S., "Golden Bristlegrass Like Hierarchical Graphene Nanofibers Entangled with N Doped CNTs Containing CoSe2 Nanocrystals at each Node as Anodes for High Rate Sodium Ion Batteries," Small, 16(38), 2003391 (2020). 
  11. Liu, X., Li, X., Lu, X., He, X., Jiang, N., Huo, Y., Xu, C., and Lin, D., "Metal-Organic Framework Derived In-Situ Nitrogen-Doped Carbon-Encapsulated CuS Nanoparticles as High-Rate and Long-Life Anode for Sodium Ion Batteries," J. Alloys Compd., 854, 157132 (2021). 
  12. Jiang, J., Ma, C., Ma, T., Zhu, J., Liu, J., Yang, G., and Yang, Y., "A Novel CoO Hierarchical Morphologies on Carbon Nanofiber for Improved Reversibility as Binder-Free Anodes in Lithium/Sodium Ion Batteries," J. Alloys Compd., 794, 385-395 (2019). 
  13. Lee, J. S., Park, J.-S., Baek, K. W., Saroha, R., Yang, S. H., Kang, Y. C., and Cho, J. S., "Coral-Like Porous Microspheres Comprising Polydopamine-Derived N-Doped C-Coated MoSe2 Nanosheets Composited with Graphitic Carbon as Anodes for High-Rate Sodium-and Potassium-Ion Batteries," Chem. Eng. J., 456, 141118 (2023). 
  14. Zhou, P., Wang, L., Zhang, M., Wu, F., Huang, Q., Su, Z., Xu, P., Liao, M., Hu, Y., and Lin, X., "Controllable MOF-Derived Hierarchical Hollow CoNiSe2 with Enhanced Mechanics and Kinetics for Extraordinary Rate Performance and Durable Anode of Sodium-Ion Batteries," ACS Appl. Energy Mater., 6(13), 7129-7137 (2023).  https://doi.org/10.1021/acsaem.3c00789
  15. Cong, B., Sun, S., Wang, B., Lv, C., Zhao, J., Jin, F., Jia, J., and Chen, G., "Iron Selenide Nanoparticles-Encapsulated within Bamboo-Like N-Doped Carbon Nanotubes as Composite Anodes for Superior Lithium and Sodium-Ion Storage," Chem. Eng. J., 435, 135185 (2022). 
  16. Park, S.-K. and Kang, Y. C., "MOF-Templated N-Doped Carbon-Coated CoSe2 Nanorods Supported on Porous CNT Microspheres with Excellent Sodium-Ion Storage and Electrocatalytic Properties," ACS Appl. Mater. Interfaces, 10(20), 17203-17213 (2018).  https://doi.org/10.1021/acsami.8b03607
  17. Shim, M. S., Hong, J. H., and Kang, Y. C., "3D Porous N and S co-Doped CNT Microspheres with Highly Dispersed CoP Nanoparticles: Toward an Efficient Bifunctional Electrocatalyst for Zn-Air Batteries," Int. J. Energy Res., 2023, 1-12 (2023). 
  18. Park, S.-K., Yang, S. H., and Kang, Y. C., "Rational Design of Metal-Organic Framework-Templated Hollow NiCo2O4 Polyhedrons Decorated on Macroporous CNT Microspheres for Improved Lithium-Ion Storage Properties," Chem. Eng. J., 349, 214-222 (2018). 
  19. Fang, X.-J., Ren, L.-P., Li, F., Jiang, Z.-X., and Wang, Z.-G., "Modulating Electronic Structure of CoSe2 by Ni Doping for Efficient Electrocatalyst for Hydrogen Evolution Reaction," Rare Met., 1-10 (2022). 
  20. Fan, S., Li, G., Cai, F., and Yang, G., "Synthesis of Porous Ni doped CoSe2/C Nanospheres Towards High Rate and Long Term Sodium Ion Half/Full Batteries," Chem. Eur. J., 26(39), 8579-8587 (2020).  https://doi.org/10.1002/chem.202000418
  21. Yang, J., Gao, H., Men, S., Shi, Z., Lin, Z., Kang, X., and Chen, S., "CoSe2 Nanoparticles Encapsulated by N-Doped Carbon Framework Intertwined with Carbon Nanotubes: High-Performance Dual Role Anode Materials for Both Li-and Na Ion Batteries," Adv. Sci., 5(12), 1800763 (2018). 
  22. Cho, J. S., Won, J. M., Lee, J.-K., and Kang, Y. C., "Design and Synthesis of Multiroom-Structured Metal Compounds-Carbon Hybrid Microspheres as Anode Materials for Rechargeable Batteries," Nano Energy, 26, 466-478 (2016). 
  23. Kim, Y. B., Seo, H. Y., Kim, S. H., Kim, T. H., Choi, J. H., Cho, J. S., Kang, Y. C., and Park, G. D., "Controllable Synthesis of Carbon Yolk Shell Microsphere and Application of Metal Compound-Carbon Yolk Shell as Effective Anode Material for Alkali Ion Batteries," Small Methods, 7(3), 2201370 (2023). 
  24. Bai, J., Li, X., Liu, G., Qian, Y., and Xiong, S., "Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High Rate and Ultralong Life Lithium Ion Battery Anode Material," Adv. Funct. Mater., 24(20), 3012-3020 (2014). https://doi.org/10.1002/adfm.201303442