DOI QR코드

DOI QR Code

Fabrication and characterization of disposable golf tees using biodegradable polymer through 3D printing

  • Jihyuk Jung (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kwang Sun Huh (Department of Chemical and Energy Engineering, Kyungnam College of Information & Technology) ;
  • Jungho Jae (School of Chemical Engineering) ;
  • Kwang Se Lee (Department of Chemical and Energy Engineering, Kyungnam College of Information & Technology)
  • 투고 : 2023.05.10
  • 심사 : 2023.06.12
  • 발행 : 2023.09.30

초록

Many studies have been conducted on the indiscriminate use of plastic due to the environment problems it has caused all over the world. This problem can be mitigated by using eco-friendly/biodegradable plastics that can be decomposed by microorganisms or enzymes. This study focused on addressing the plastic golf tees that are thrown away at golf courses. In order to replace conventional golf tees (ABS) with a more eco-friendly alternative, this study explored a biodegradable plastic and 3D printing method for producing golf tees. Among the biodegradable plastics, PLA (polylactic acid) was found to be a good candidate as an eco-friendly material because it is biodegradable by microorganisms. Thus, golf tees were prepared by using PLA via 3D printing, and the physical and chemical properties of the tees were evaluated. The amorphous region of PLA was confirmed through XRD. Also, FT-IR showed the unique peak of PLA without impurities. It was confirmed through an optical microscope that the specific surface area and roughness had increased. This structure plays a role in firmly fixing the golf tee when it is inserted into the ground. In addition, it was possible to improve the compressive load compared to ABS golf tees while also decreasing the compressive stretching.

키워드

참고문헌

  1. You, U. S., Oh Y. S., Hong, S. H., and Choi, S. W., "International Trends in Development, Commercialization, and Market of Bio-Plastics," Clean Technol., 21(3), 141-152 (2015). https://doi.org/10.7464/ksct.2015.21.3.141
  2. Karbalaei, S., Hanachi, P., Walker T. R., and Cole, M., "Occurrence, Sources, Human Health Impacts, and Mitigation of Microplastic Pollution," Environ. Sci. Pollut. Tes. Int., 25, 36046-36063 (2018). https://doi.org/10.1007/s11356-018-3508-7
  3. Filho, W. L., Saari, U., Fedoruk M., Lital A., Moora H., Kloga, M., and Voronova V., "An Overview of the Problems Posed by Plastic Products and the Role of Extended Producer Responsibility in Europe," J. Clean. Prod., 214., 550-558 (2019). https://doi.org/10.1016/j.jclepro.2018.12.256
  4. MacLeod, M., Arp, H. P., Tekman, M., and Jahnke A., "The Global Threat from Plastic Pollution," Science, 373, 61-65 (2021). https://doi.org/10.1126/science.abg5433
  5. Geyer, R., Jambek, J. R., and Law, K. L., "Production, Use, and Fate of All Plastics Ever Made," Sci. Adv., 3(7), e1700782 (2017).
  6. Elaswy, M. A., Kim, K. H., Park, J. W., and Deep, A., "Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites," Renew. Sust. Energ. Rev., 79, 1346-1352 (2017).
  7. Leja, K. and Lewandowicz, G., "Polymer Biodegradation and Biodegradable Polymers - a Review," Pol. J. Environ. Stud., 19(2), 255-266 (2010).
  8. Rydz, J., Sikorska W., Kyulavska, M., and Christova, D., "Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development," Int. J. Mol. Sci., 16(1), 564-596 (2015). https://doi.org/10.3390/ijms16010564
  9. Kim, Y., Lee, S., Park, H., and Davis, C., "A Brief Review on Global Plastic Regulation Trends," J. Energy Eng., 30(1), 21-25 (2021). https://doi.org/10.5855/ENERGY.2021.30.1.021
  10. Choi, Y., Choi, H. J., and Rhee, S. W., "Current Status and Improvements on Management of Plastic Waste in Korea," JKIRR, 27(4), 3-15 (2018).
  11. Anderson, J. M. and Shive, M. S., "Biodegradation and Biocompatibility of PLA and PLGA Microspheres," Adv. Drug Deliv. Rev., 28(1), 5-24 (1997). https://doi.org/10.1016/S0169-409X(97)00048-3
  12. Siracusa, V., Rocculi, P., Romani, S., and Rosa, M. D., "Biodegradable Polymers for Food Packaging: A Review," Trends Food Sci. Techno., 19(12), 634-643 (2008).
  13. Nanaki, S., Barmpalexis, P., Iatrou, A., Christodoulou, E., Kostoglou, M., and Bikiaris, D., N., "Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly (Propylene Adipate) Novel Polymer Blends Appropriate for Long-Acting Injectable Formulations," Pharmaceutics, 10, 130 (2018).
  14. Zia, M. A., Khosa, M. K., Noor, A., Qayyum, S., and Shakir, M. S., "PMMA/ABS/CoCl2 Composites for Pharmaceutical Applications: Thermal, Antimicrobial, Antibiofilm, and Antioxidant Studies," Molecules, 27(22), 7669 (2022).
  15. Singla, P., Mehta, R., Berek, D., and Upadhyay, S. N., "Microwave Assisted Synthesis of Poly(lactic acid) and its Characterization using Size Exclusion Chromatography," J. Macromol. Sci., 49, 963-970 (2012).
  16. Silverajah, G. V. S., Ibrahim, N. A., Zainuddin, M., Yunus, W. N. Z. W., and Hassan, H. A., "Mechanical, Thermal, and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend.," Molecules, 17(10), 11729-11747 (2012). https://doi.org/10.3390/molecules171011729
  17. Ferreira, A. C., Diniz, M. F., and Mattos, E. D. C., "FT-IR Methodology (Transmission and UATR) to Quantify Automotive Systems," Polimeros., 28(1), 6-14 (2018). https://doi.org/10.1590/0104-1428.2412
  18. Olongal, M., Nainar, M. A. M., Marakkattupurathe, M., Asharaf, S. M. V., and Athiyanathil., "Effect of Poly(ethylene-co-vinyl acetate) Additive on Mechanical Properties of Maleic Anhydride-Grafted Acrylonitrile Butadiene Styrene for Coating Applications," J. Vinyl Addit. Technol., 25(3), 287-295 (2018). https://doi.org/10.1002/vnl.21692
  19. Cress, A. K., Huynh, J., Aderson, E. H., O'neill, R., Schneider, Y., and Keles, O., "Effect of Recycling on the Mechanical Behavior and Structure of Additively Manufactured Acrylonitrile Butadiene Styrene (ABS)," J. Clean. Prod., 279(10), 123689 (2021).
  20. Weng, Z., Wang, J., Senthil, T., and Wu, L., "Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing," Mater. Des., 102, 276-283 (2016). https://doi.org/10.1016/j.matdes.2016.04.045
  21. Johnny, N. M., Klohn, T. G., Bianchi, O., Fiorio, R., and Freire, E., "Dynamic Mechanical, Thermal, and Morphological Study of ABS/Textile Fiber Composite," Polym. Bull., 64, 497-510 (2020). https://doi.org/10.1007/s00289-009-0200-6
  22. Zhang, L., Chai, W., Li, W., Zhang,, K. S. N. Y. W., and Dai, C., "Intumescent-Grafted Bamboo Charcoal: A Natural Nontoxic Fire-Retardant Filler for Polylactic Acid (PLA) Composites," ACS Omega, 6(41), 26990-27006 (2021).
  23. Xiang, S., Feng, L., Bian, X., Li, G., Chen, X., and Chen, X., "Evaluation of PLA Content in PLA/PBAT Blends using TGA," Polym. Test., 81, 106211 (2022).