DOI QR코드

DOI QR Code

Two-line-same-phase AC standstill measurement method for obtaining accurate PMSM d-q-axis inductance values

  • Fang Yao (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology) ;
  • Mingwei Li (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology) ;
  • Leijiao Ge (School of Electrical and Information Engineering, Tianjin University) ;
  • Wenlong Liao (Department of Energy, Aalborg University) ;
  • Kody Powell (Department of Chemical Engineering, University of Utah)
  • Received : 2022.09.27
  • Accepted : 2023.03.16
  • Published : 2023.09.20

Abstract

With their simple structure, good characteristics, small size, low weight, high starting torque, and high power density, permanent magnet synchronous motors (PMSM) are widely used in industry and national projects. However, accurate PMSM d-q-axis inductance values cannot be obtained after dynamic decoupling of the d-q-axis voltages of a PMSM under vector control. To tackle this challenge, this paper proposes a two-line-same-phase AC standstill measurement (TLSP-ACSM) method. To verify the effectiveness of the proposed method, both the motor synthetic magnetomotive force and theoretical error of inductance measurement based on the TLSP-ACSM method are analyzed, followed by experiments to demonstrate the effectiveness of TLSP-ACSM. By comparing the proposed method with another measurement method, it is demonstrated that the relative error of the d-axis and q-axis inductance measurements is reduced by about 23% and 21%, respectively. When considering magnetic flux leakage, TLSP-ACSM shows better measurement precision and tracking performance.

Keywords

Acknowledgement

This work is supported by the National Key R&D Program of China (No. 2022ZD0116900), National Natural Science Foundation of China (No. 52277118) and the State Key Laboratory of Power System and Generation Equipment (SKLD21KM10). The corresponding author is Leijiao Ge (legendglj99@tju.edu.cn).

References

  1. Lazari, P., Sen, B., Wang, J., et al.: Accurate d-q axis modeling of synchronous machines with skew accounting for saturation. IEEE Trans. Magn. 50(11), 1-4 (2014) https://doi.org/10.1109/TMAG.2014.2327918
  2. Ni, R., Wang, G., Gui, X., et al.: Investigation of and axis inductances influenced by slot-pole combination based on axial flux permanent magnet machines. IEEE Trans. Ind. Electron. 61(9), 4539 (2014)
  3. Rabiei, A., Thiringer, T., Alatalo, M., et al.: Improved maximum torque per ampere algorithm accounting for core saturation, cross coupling effect and temperature for a PM intended for vehicular applications. IEEE Trans. Transport. Electrific. 2(2), 150-159 (2016) https://doi.org/10.1109/TTE.2016.2528505
  4. Liang, W., Fei, W., Luk, P.C.K.: An improved sideband current harmonic model of interior PMSM drive by considering magnetic saturation and cross coupling effects[J]. IEEE Trans. Ind. Electro. 63(7), 4097-4104 (2016) https://doi.org/10.1109/TIE.2016.2540585
  5. Deng, W., Xia, C., Yan, Y., Geng, Q., Shi, T.: Online multiparameter identification of surface-mounted PMSM considering inverter disturbance voltage. IEEE Trans. Energy Convers. 32(1), 202-212 (2017) https://doi.org/10.1109/TEC.2016.2621130
  6. Raja, R., Sebastian, T., Wang, M.: Online stator inductance estimation for permanent magnet motors using PWM excitation. IEEE Trans. Transport. Electrific. 5(1), 107-117 (2019) https://doi.org/10.1109/TTE.2019.2891047
  7. Zhang, Y., Jiao, J., Liu, J.: Direct power control of PWM rectifiers with online inductance identification under unbalanced and distorted network conditions. IEEE Trans. Power Electron. 34(12), 12524-12537 (2019) https://doi.org/10.1109/TPEL.2019.2908908
  8. Nanda, B., Kumar, P.: Qualitative and quantitative analysis of different inductance measurement techniques for IPM synchronous machines. IEEE Trans. Energy Convers. 36(4), 3305-3316 (2021) https://doi.org/10.1109/TEC.2021.3070087
  9. Nguyen, H.T., Jung, J.: Finite control set model predictive control to guarantee stability and robustness for surface-mounted PM synchronous motors. IEEE Trans. Ind. Electron. 65(11), 8510-8519 (2018) https://doi.org/10.1109/TIE.2018.2814006
  10. Jung, T.U., Park, C.S.: A torque compensation method considering temperature variation of SPMSM. J. Electr. Eng. Technol. 13(1), 160-167 (2018)
  11. Rodriguez, J. and Cortes, P.: Effect of model parameter errors. In: Predictive Control of Power Converters and Electrical Drives, IEEE (2012)
  12. Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter. IEEE Trans. Industr. Electron. 63(5), 3100-3107 (2016) https://doi.org/10.1109/TIE.2016.2515072
  13. Sun, X., Zhang, Y., Lei, G., et al.: An improved deadbeat predictive stator flux control with reduced-order disturbance observer for in-wheel PMSMs. IEEE/ASME Trans. Mechatron. PP(99), 1-1 (2021)
  14. Sun, X., Zhang, Y., Cai, Y.F., et al.: Compensated deadbeat predictive current control considering disturbance and VSI nonlinearity for in-wheel PMSMs. IEEE/ASME Trans. Mechatron. 27(5), 3536-3547 (2021) https://doi.org/10.1109/TMECH.2021.3135936
  15. Wu, X., Fu, X., Lin, M.: Offline inductance identification of IPMSM with sequence-pulse injection. IEEE Trans. Ind. Inform. 15(11), 6127-6135 (2019) https://doi.org/10.1109/TII.2019.2932796
  16. Maurer, F., Xuan, M.T., Simond, J.: Two full parameter identification methods for synchronous machine applying DC-Decay tests for a rotor in arbitrary position. IEEE Trans. Ind. Appl. 53(4), 3505-3518 (2017) https://doi.org/10.1109/TIA.2017.2688462
  17. Duan, F., Zivanovic, R., Al-Sarawi, S., Mba, D.: Induction motor parameter estimation using sparse grid optimization algorithm. IEEE Trans. Ind. Inform. 12(4), 1453-1461 (2016) https://doi.org/10.1109/TII.2016.2573743
  18. Underwood, S.J., Husain, I.: Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 57(7), 2435-2443 (2010) https://doi.org/10.1109/TIE.2009.2036029
  19. Yang, S., Ding, D., Li, X., Xie, Z., et al.: A decoupling estimation scheme for rotor resistance and mutual inductance in indirect vector controlled induction motor drives. IEEE Trans. Energy Convers. 34(2), 1033-1042 (2019) https://doi.org/10.1109/TEC.2018.2880796
  20. Xiao, S., Griffo, A.: PWM-based Flux linkage estimation for permanent magnet synchronous machines. J. Eng. 19(17), 4045-4049 (2019) https://doi.org/10.1049/joe.2018.8105
  21. Liu, Z., Wei, H., Zhong, Q., Liu, K., et al.: GPU implementation of DPSO-RE algorithm for parameters identification of surface PMSM considering VSI nonlinearity. IEEE J. Emerg. Select. Topics Power Electron. 5(3), 1334-1345 (2017) https://doi.org/10.1109/JESTPE.2017.2690688
  22. Choi, K., Kim, Y., Kim, K., et al.: Using the stator current ripple model for real-time estimation of full parameters of a permanent magnet synchronous motor. IEEE Access 7, 33369-33379 (2019) https://doi.org/10.1109/ACCESS.2019.2904228
  23. Kim, J.K., An, K., Jin, M., et al.: Fast and reliable estimation of composite load model parameters using analytical similarity of parameter sensitivity. IEEE Trans. Power Syst. 31(1), 663-6710 (2016) https://doi.org/10.1109/TPWRS.2015.2409116
  24. Rallabandi, V., Taran, N., Ionel, D.M., et al.: Inductance testing for ipm synchronous machines according to the new ieee std 1812 and typical laboratory practices. IEEE Trans. Ind. Appl. 55(3), 2649-2659 (2019) https://doi.org/10.1109/TIA.2019.2897668
  25. Dutta, R., Rahman, M.F.: A comparative analysis of two test methods of measuring d- andq-axes inductances of interior permanent-magnet machine. IEEE Trans. Magn. 42(11), 3712-3718 (2006) https://doi.org/10.1109/TMAG.2006.880994
  26. Odhano, S.A., Bojoi, R., Armando, E., et al.: Identification of three-phase ipm machine parameters using torque tests. IEEE Trans. Ind. Appl. 53(3), 1883-1891 (2017) https://doi.org/10.1109/TIA.2016.2646345
  27. Li, S., Fang, J., Han, B.: High-precision parameter identification of high-speed magnetic suspension motor. IEEE Trans. Energy Convers. 3(1), 20-31 (2016)
  28. Li, G., Wu, Z., Han, S., et al.: Modified AC standstill method for PMSM d - q axis inductances measurement. IET Sci. Meas. Technol. 14(4), 430-434 (2020) https://doi.org/10.1049/iet-smt.2018.5499
  29. Liu, K., Zhu, Z.Q., Stone, D.A.: Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets. IEEE Trans. Ind. Electron. 60(12), 5902-5913 (2013) https://doi.org/10.1109/TIE.2013.2238874
  30. Feng, L.I., Chaoying, X.I.A.: Inductance identification algorithm and variable-parameters MTPA control strategy for IPMSM considering magnetic circuit saturation. Trans. China Electrotech. Soc. 11(32), 136 (2017)
  31. Ge, L., Liu, H., Yan, J., et al.: Optimal integrated energy system planning with DG uncertainty affine model and carbon emissions charges. IEEE Trans. Sustain. Energy 13(2), 905-918 (2022) https://doi.org/10.1109/TSTE.2021.3139109