DOI QR코드

DOI QR Code

Fault-tolerant capability of MMC with novel structure of middle submodules

  • Duc Dung Le (Department of Electrical and Electronics Engineering, Ho Chi Minh City University of Food Industry ) ;
  • Dong‑Choon Lee (Department of Electrical Engineering, Yeungnam University) ;
  • Eui‑Cheol Nho (Department of Electrical Engineering, Pukyong National University)
  • Received : 2023.04.26
  • Accepted : 2023.07.02
  • Published : 2023.09.20

Abstract

In this paper, an improved modular multilevel converter (MMC) topology has been proposed with fault-tolerant capability and reduced submodule capacitor voltage fluctuation (SMCVF) in a low frequency operating range. In the proposed converter, a novel middle SM, which has salient features, is inserted between the upper and lower arms. For regular operation, the middle SM is applied to mitigate the power fluctuations in both arms by providing distribution of high-frequency power components, which reduces the AC voltage fluctuation on the SM capacitor. When a fault occurs in any SM in the upper or lower arms, a new half-bridge SM can be configured from the middle SM to replace the faulty SM without any interruption, which means the converter is operated in the fault-tolerant mode. Therefore, the performance of the converter is maintained well, and the system reliability is enhanced. Simulation and experimental results have verified the effectiveness of the proposed topology and control strategy.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202310).

References

  1. Lesnicar, A., Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. In: 2003 IEEE Bologna PowerTech, pp. 272-277 (2003) 
  2. Allebrod, S., Hamerski, R., Marquardt, R.: New transformerless, scalable modular multilevel converters for HVDC-transmission. In: IEEE APESC, pp 174-179 (2008) 
  3. Peralta, J., Saad, H., Dennetiere, S., Mahseredjian, J., Nguefeu, S.: Detailed and averaged models for a 401-level MMC-HVDC system. IEEE Trans. Power Deliv. 27(3), 1501-1508 (2012)  https://doi.org/10.1109/TPWRD.2012.2188911
  4. Peng, F.Z., Lai, J.-S., McKeever, J.W., Van Coevering, J.: A multilevel voltage-source inverter with separate DC sources for static Var generation. IEEE Trans. Ind. Appl. 32(5), 1130-1138 (1996)  https://doi.org/10.1109/28.536875
  5. Hagiwara, M., Nishimura, K., Akagi, H.: A medium-voltage motor drive with a modular multilevel PWM inverter. IEEE Trans. Power Electron. 25(7), 1786-1799 (2010)  https://doi.org/10.1109/TPEL.2010.2042303
  6. Nguyen, V.T., Kim, J.-W., Park, J.-W., Lee, J.-M., Park, B.-G.: A modified submodule of modular multilevel converter using active power decoupling method for reducing capacitor voltage ripple under low-frequency operation. IET Power Electron. 16, 868-882 (2022)  https://doi.org/10.1049/pel2.12432
  7. Tawfik, M.A., Irfan, M.S., Lee, C., Ahmed, A., Park, J.-H.: Capacitor-less modular multilevel converter with sliding mode control for MV adjustable-speed motor drives. J. Power Electron. 22, 1265-1278 (2022)  https://doi.org/10.1007/s43236-022-00484-0
  8. Korn, A.J., Winkelnkemper, M., Steimer, P.: Low output frequency operation of the modular multi-level converter. In: Proceeding of IEEE ECCE, pp 3993-3997 
  9. Le, D.D., Lee, D.-C.: Current stress reduction and voltage total harmonic distortion improvement of flying-capacitor modular multilevel converters for AC machine drive applications. IEEE Trans. Ind. Electron. 69(1), 90-100 (2022)  https://doi.org/10.1109/TIE.2021.3050394
  10. Wang, L., Zhang, L., Xiong, Y., Ma, R.: Low-frequency suppression strategy based on predictive control model for modular multilevel converters. J. Power Electron. 21(10), 1407-1415 (2021)  https://doi.org/10.1007/s43236-021-00286-w
  11. Younis, T., Mattavelli, P., Toigo, I., Corradin, M.: Three-phase modular multilevel converter with optimized capacitor sizing for low-voltage applications. IEEE Trans. Power Electron. 36(12), 13930-13943 (2021)  https://doi.org/10.1109/TPEL.2021.3087670
  12. Hagiwara, M., Hasegawa, I., Akagi, H.: Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter. IEEE Trans. Ind. Appl. 49(4), 1556-1565 (2013)  https://doi.org/10.1109/TIA.2013.2256331
  13. Li, B., et al.: An improved circulating current injection method for modular multilevel converters in variable-speed drives. IEEE Trans. Ind. Electron. 63(11), 7215-7225 (2016)  https://doi.org/10.1109/TIE.2016.2547899
  14. Zhao, F., Xiao, G., Zhu, T., Zheng, X., Wu, Z., Zhao, T.: A coordinated strategy of low-speed and start-up operation for medium-voltage variable-speed drives with a modular multilevel converter. IEEE Trans. Power Electron. 35(1), 709-724 (2020)  https://doi.org/10.1109/TPEL.2019.2913696
  15. Antonopoulos, A., Angquist, L., Norrga, S., Ilves, K., Harnefors, L., Nee, H.P.: Modular multilevel converter AC motor drives with constant torque from zero to nominal speed. IEEE Trans. Ind. Appl. 50(3), 1982-1993 (2014)  https://doi.org/10.1109/TIA.2013.2286217
  16. Wang, K., Li, Y., Zheng, Z., Xu, L.: Voltage balancing and fluctuation-suppression methods of floating capacitors in a new modular multilevel converter. IEEE Trans. Ind. Electron. 60(5), 1943-1954 (2013)  https://doi.org/10.1109/TIE.2012.2201433
  17. Li, B., Zhang, Y., Wang, G., Sun, W., Xu, D., Wang, W.: A modified modular multilevel converter with reduced capacitor voltage fluctuation. IEEE Trans. Ind. Electron. 62(10), 6108-6119 (2015)  https://doi.org/10.1109/TIE.2015.2423665
  18. Huang, M., Zou, J., Ma, X., Li, Y., Han, M.: Modified modular multilevel converter to reduce submodule capacitor voltage ripples without common-mode voltage injected. IEEE Trans. Ind. Electron. 66(3), 2236-2246 (2019)  https://doi.org/10.1109/TIE.2018.2840484
  19. Huang, M., Kang, Z., Li, W., Zou, J., Ma, X., Li, J.: Modified modular multilevel converter with third-order harmonic voltage injection to reduce submodule capacitor voltage ripples. IEEE Trans. Power Electron. 36(6), 7074-7086 (2021)  https://doi.org/10.1109/TPEL.2020.3035286
  20. Le, D.D., Lee, D.-C.: A modular multilevel converter topology with novel middle submodules to reduce capacitor voltage fluctuations. IEEE Trans. Power Electron. 37(1), 70-75 (2022)  https://doi.org/10.1109/TPEL.2021.3101884
  21. Le, D.D., Lee, D.-C.: A modified modular multilevel converter with features of reduction of submodule capacitor fluctuation and fault-tolerant operation. In: Proceedings of IEEE 12th PEDG, pp 1-6 (2021) 
  22. Li, B., Shi, S., Wang, B., Wang, G., Wang, W., Xu, D.: Fault diagnosis and tolerant control of single IGBT open-circuit failure in modular multilevel converters. IEEE Trans. Power Electron. 31(4), 3165-3176 (2016)  https://doi.org/10.1109/TPEL.2015.2454534
  23. Li, B., Xu, Z., Ding, J., Xu, D.: Fault-tolerant control of medium-voltage modular multilevel converters with minimum performance degradation under submodule failures. IEEE Access 6, 11772-11781 (2018)  https://doi.org/10.1109/ACCESS.2018.2811904
  24. Li, K., Yuan, L., Zhao, Z., Lu, S., Zhang, Y.: Fault-tolerant control of MMC with hot reserved submodules based on carrier phase shift modulation. IEEE Trans. Power Electron. 32(9), 6778-6791 (2017)  https://doi.org/10.1109/TPEL.2016.2628762
  25. Abdelsalam, M., Marei, M.I., Tennakoon, S.B.: An integrated control strategy with fault detection and tolerant control capability based on capacitor voltage estimation for modular multilevel converters. IEEE Trans. Ind. Appl. 53(3), 2840-2851 (2017)  https://doi.org/10.1109/TIA.2016.2608940
  26. Shao, S., Wheeler, P.W., Clare, J.C., Watson, A.J.: Fault detection for modular multilevel converters based on sliding mode observer. IEEE Trans. Power Electron. 28(11), 4867-4872 (2013)  https://doi.org/10.1109/TPEL.2013.2242093
  27. IGBT-Infineon Technol.: FF450R33T3E3. 2018. https://www.infneon.com/. Accessed30 Nov 2022 
  28. Powersim: Tutorial IGBT and MOSFET loss calculation in thermal module. 2019. https://powersimtech.com/. Accessed 30 Nov 2022