DOI QR코드

DOI QR Code

THE GRAM AND HANKEL MATRICES VIA SPECIAL NUMBER SEQUENCES

  • Yasemin Alp (Department of Education of Mathematics and Science, Selcuk University) ;
  • E.Gokcen Kocer (Department of Mathematics-Computer Sciences, Necmettin Erbakan University)
  • Received : 2022.05.31
  • Accepted : 2023.03.29
  • Published : 2023.09.14

Abstract

In this study, we consider the Hankel and Gram matrices which are defined by the elements of special number sequences. Firstly, the eigenvalues, determinant, and norms of the Hankel matrix defined by special number sequences are obtained. Afterwards, using the relationship between the Gram and Hankel matrices, the eigenvalues, determinants, and norms of the Gram matrices defined by number sequences are given.

Keywords

References

  1. E. G. Alptekin, On norms of Toeplitz and Hankel matrices with the Pell, Pell-Lucas and modified Pell numbers, Selcuk Univ. J. Educ. Fac. 19 (2005), 287-297.
  2. E. G. Alptekin, T. Mansour, and N. Tuglu, Norms of circulant and semicirculant matrices with Horadam's numbers, Ars Comb. 85 (2007), 353-359.
  3. M. Bahsi and S. Solak, On the circulant matrices with arithmetic sequence, Int. J. Contemp. Math. Sciences 25 (2010), no. 5, 1213-1222.
  4. M. Bahsi and S. Solak, On the norms of r- circulant matrices with the hyper-Fibonacci and Lucas numbers, JMI, J. Math. Inequal. 8 (2014), no. 4, 693-705.
  5. S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra, Cambridge University Press, 2018.
  6. M. Fiedler, Matrices and graphs in Euclidean geometry, Electron. J. Linear Algebra 14 (2005), 51-58. https://doi.org/10.13001/1081-3810.1177
  7. P. Gorkin, J.E. Mccarthy, S. Pott, and B. D. Wick, Thin sequences and the Gram matrix, (2014); arXiv:1404.3088v2.
  8. I. Halperin, On the Gram matrix, Canad. Math. Bull. 5 (1962), no. 3, 265-280. https://doi.org/10.4153/CMB-1962-027-1
  9. A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Q. 3 (1965), 161-175. https://doi.org/10.1080/00150517.1965.12431416
  10. A. F. Horadam and P. Flipponi, Cholesky algorithm matrices of Fibonacci type and properties of generalized sequences, Fibonacci Q. 29 (1991), no. 2, 164-173.
  11. I. S. Iohvidov, Hankel and Toeplitz Matrices and Forms, Birkhauser, 1982.
  12. C. Kizilates and N. Tuglu, On the bounds for the spectral norms of geometric circulant matrices, J Inequal Appl. 312 (2016), no. 3, 2-9.
  13. C. Kizilates, N. Tuglu, and B. C, ekim, Binomial transforms of quadrapell sequences and quadrapell matrix sequences, J. sci. arts 38 (2017), no. 1, 69-80.
  14. C. Kizilates and N. Tuglu, On the norms of geometric and symmetric geometric circulant matrices with the tribonacci number, Gazi Univ. J. Sci. 31 (2018), no. 2, 555-567.
  15. E. G. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and Jacobsthal-Lucas numbers, Hacet. J. Math. Stat. 36 (2007), no. 2, 133-142.
  16. L. Lu, Gram matrix of Bernstein basis: properties and applications, J. Comput. Appl. Math. 280 (2015), 37-41. https://doi.org/10.1016/j.cam.2014.11.037
  17. B. Radicic, On the k-circulant matrices (with geometric sequence), Quaest. Math. 39 (2016), no. 1, 135-144. https://doi.org/10.2989/16073606.2015.1024185
  18. B. Radicic, On k-circulant matrices with arithmetic sequence, Filomat 31 (2017), no. 8, 2517-2525. https://doi.org/10.2298/FIL1708517R
  19. B. Radicic, On k-circulant matrices with the Lucas numbers, Filomat 32 (2018), no. 11, 4037-4046. https://doi.org/10.2298/FIL1811037R
  20. B. Radicic, On k-circulant matrices involving the Pell numbers, Results Math. 74 (2019), 1-13. https://doi.org/10.1007/s00025-019-1121-9
  21. B. Radicic, On k-circulant matrices involving the Jacobsthal numbers, Rev. de la Union Mat. Argentina, 60 (2019), no. 2, 431-442. https://doi.org/10.33044/revuma.v60n2a10
  22. B. Radicic, On k-circulant matrices involving geometric sequence, Hacet. J. Math. Stat. 48 (2019), no. 13, 805-817.
  23. B. Radicic, The inverse and the Moore - Penrose inverse of a k- circulant matrix with binomial coefficients, Bull. Belg. Math. Soc. - Simon Stevin 27 (2020), 29-42. https://doi.org/10.36045/bbms/1590199301
  24. B. Radicic, On k-circulant matrices involving the Pell-Lucas (and the modified Pell) numbers, Comp. Appl. Math. 40 (2021), no. 111.
  25. Z. Raza and M.A. Ali, On the norms of some special matrices with generalized Fibonacci sequence, J. Appl. Math. & Informatics, 33 (2015), no. 5-6, 593-605. https://doi.org/10.14317/jami.2015.593
  26. A. Seigal, Gram determinant of real binary tensors, (2016); arXiv: 1612.04420v1.
  27. S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput. 160 (2005), no. 1, 125-132.
  28. S. Solak and M. Bahsi, On the spectral norms of Hankel matrices with Fibonacci and Lucas numbers, Selcuk J. Appl. Math. 12 (2011), no. 1, 71-76.
  29. S. Solak and M. Bahsi, On the norms of circulant matrices with the complex Fibonacci and Lucas numbers, Gazi Univ. J. Sci. 29 (2016), no. 2, 487-490.
  30. S. Solak and M. Bahsi, Some properties of circulant matrices with Ducci sequences, Linear Algebra Its Appl. 542 (2018), 557-568. https://doi.org/10.1016/j.laa.2017.09.010
  31. S. Solak, M. Bahsi, and O. Kan, On the circulant matrices with Ducci sequences and Fibonacci numbers, Filomat 32 (2018), no. 15, 5501-5508. https://doi.org/10.2298/FIL1815501S
  32. V. Sreeram and P. Agathoklis, On the properties of Gram matrix, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41 (1994), no. 3, 234-237. https://doi.org/10.1109/81.273922
  33. N. Tuglu and C. Kizilates, On the norms of circulant and r- circulant matrices with the hyperharmonic Fibonacci numbers, J Inequal Appl. 253 (2015), 2015.
  34. Y. Yazlik, N. Yilmaz, and N. Taskara, On the norms of Hankel matrices with the k-Jacobsthal and k-Jacobsthal Lucas numbers, J. Selcuk Univ. Natural and Appl. Sci. 3 (2014), no. 2, 35-42.
  35. P. Vasco, P. Catarino, H. Campos, A. P. Aires, and A. Borges, k- Pell, k-Pell-Lucas and modified k- Pell numbers: some identities and norms of Hankel matrices, Int. J. Math. Anal. 9 (2015), no. 1, 31-37. https://doi.org/10.12988/ijma.2015.411370