References
- E. G. Alptekin, On norms of Toeplitz and Hankel matrices with the Pell, Pell-Lucas and modified Pell numbers, Selcuk Univ. J. Educ. Fac. 19 (2005), 287-297.
- E. G. Alptekin, T. Mansour, and N. Tuglu, Norms of circulant and semicirculant matrices with Horadam's numbers, Ars Comb. 85 (2007), 353-359.
- M. Bahsi and S. Solak, On the circulant matrices with arithmetic sequence, Int. J. Contemp. Math. Sciences 25 (2010), no. 5, 1213-1222.
- M. Bahsi and S. Solak, On the norms of r- circulant matrices with the hyper-Fibonacci and Lucas numbers, JMI, J. Math. Inequal. 8 (2014), no. 4, 693-705.
- S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra, Cambridge University Press, 2018.
- M. Fiedler, Matrices and graphs in Euclidean geometry, Electron. J. Linear Algebra 14 (2005), 51-58. https://doi.org/10.13001/1081-3810.1177
- P. Gorkin, J.E. Mccarthy, S. Pott, and B. D. Wick, Thin sequences and the Gram matrix, (2014); arXiv:1404.3088v2.
- I. Halperin, On the Gram matrix, Canad. Math. Bull. 5 (1962), no. 3, 265-280. https://doi.org/10.4153/CMB-1962-027-1
- A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Q. 3 (1965), 161-175. https://doi.org/10.1080/00150517.1965.12431416
- A. F. Horadam and P. Flipponi, Cholesky algorithm matrices of Fibonacci type and properties of generalized sequences, Fibonacci Q. 29 (1991), no. 2, 164-173.
- I. S. Iohvidov, Hankel and Toeplitz Matrices and Forms, Birkhauser, 1982.
- C. Kizilates and N. Tuglu, On the bounds for the spectral norms of geometric circulant matrices, J Inequal Appl. 312 (2016), no. 3, 2-9.
- C. Kizilates, N. Tuglu, and B. C, ekim, Binomial transforms of quadrapell sequences and quadrapell matrix sequences, J. sci. arts 38 (2017), no. 1, 69-80.
- C. Kizilates and N. Tuglu, On the norms of geometric and symmetric geometric circulant matrices with the tribonacci number, Gazi Univ. J. Sci. 31 (2018), no. 2, 555-567.
- E. G. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and Jacobsthal-Lucas numbers, Hacet. J. Math. Stat. 36 (2007), no. 2, 133-142.
- L. Lu, Gram matrix of Bernstein basis: properties and applications, J. Comput. Appl. Math. 280 (2015), 37-41. https://doi.org/10.1016/j.cam.2014.11.037
- B. Radicic, On the k-circulant matrices (with geometric sequence), Quaest. Math. 39 (2016), no. 1, 135-144. https://doi.org/10.2989/16073606.2015.1024185
- B. Radicic, On k-circulant matrices with arithmetic sequence, Filomat 31 (2017), no. 8, 2517-2525. https://doi.org/10.2298/FIL1708517R
- B. Radicic, On k-circulant matrices with the Lucas numbers, Filomat 32 (2018), no. 11, 4037-4046. https://doi.org/10.2298/FIL1811037R
- B. Radicic, On k-circulant matrices involving the Pell numbers, Results Math. 74 (2019), 1-13. https://doi.org/10.1007/s00025-019-1121-9
- B. Radicic, On k-circulant matrices involving the Jacobsthal numbers, Rev. de la Union Mat. Argentina, 60 (2019), no. 2, 431-442. https://doi.org/10.33044/revuma.v60n2a10
- B. Radicic, On k-circulant matrices involving geometric sequence, Hacet. J. Math. Stat. 48 (2019), no. 13, 805-817.
- B. Radicic, The inverse and the Moore - Penrose inverse of a k- circulant matrix with binomial coefficients, Bull. Belg. Math. Soc. - Simon Stevin 27 (2020), 29-42. https://doi.org/10.36045/bbms/1590199301
- B. Radicic, On k-circulant matrices involving the Pell-Lucas (and the modified Pell) numbers, Comp. Appl. Math. 40 (2021), no. 111.
- Z. Raza and M.A. Ali, On the norms of some special matrices with generalized Fibonacci sequence, J. Appl. Math. & Informatics, 33 (2015), no. 5-6, 593-605. https://doi.org/10.14317/jami.2015.593
- A. Seigal, Gram determinant of real binary tensors, (2016); arXiv: 1612.04420v1.
- S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput. 160 (2005), no. 1, 125-132.
- S. Solak and M. Bahsi, On the spectral norms of Hankel matrices with Fibonacci and Lucas numbers, Selcuk J. Appl. Math. 12 (2011), no. 1, 71-76.
- S. Solak and M. Bahsi, On the norms of circulant matrices with the complex Fibonacci and Lucas numbers, Gazi Univ. J. Sci. 29 (2016), no. 2, 487-490.
- S. Solak and M. Bahsi, Some properties of circulant matrices with Ducci sequences, Linear Algebra Its Appl. 542 (2018), 557-568. https://doi.org/10.1016/j.laa.2017.09.010
- S. Solak, M. Bahsi, and O. Kan, On the circulant matrices with Ducci sequences and Fibonacci numbers, Filomat 32 (2018), no. 15, 5501-5508. https://doi.org/10.2298/FIL1815501S
- V. Sreeram and P. Agathoklis, On the properties of Gram matrix, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41 (1994), no. 3, 234-237. https://doi.org/10.1109/81.273922
- N. Tuglu and C. Kizilates, On the norms of circulant and r- circulant matrices with the hyperharmonic Fibonacci numbers, J Inequal Appl. 253 (2015), 2015.
- Y. Yazlik, N. Yilmaz, and N. Taskara, On the norms of Hankel matrices with the k-Jacobsthal and k-Jacobsthal Lucas numbers, J. Selcuk Univ. Natural and Appl. Sci. 3 (2014), no. 2, 35-42.
- P. Vasco, P. Catarino, H. Campos, A. P. Aires, and A. Borges, k- Pell, k-Pell-Lucas and modified k- Pell numbers: some identities and norms of Hankel matrices, Int. J. Math. Anal. 9 (2015), no. 1, 31-37. https://doi.org/10.12988/ijma.2015.411370